dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorRaposo, C. A.
dc.creatorBastos, W. D.
dc.creatorAvila, J. A. J.
dc.date2014-05-20T15:31:26Z
dc.date2016-10-25T18:07:15Z
dc.date2014-05-20T15:31:26Z
dc.date2016-10-25T18:07:15Z
dc.date2011-01-01
dc.date.accessioned2017-04-06T00:22:10Z
dc.date.available2017-04-06T00:22:10Z
dc.identifierApplied Mathematics & Information Sciences. Kalamazoo: Natural Sciences Publishing Corporation, v. 5, n. 1, p. 17-28, 2011.
dc.identifier1935-0090
dc.identifierhttp://hdl.handle.net/11449/40566
dc.identifierhttp://acervodigital.unesp.br/handle/11449/40566
dc.identifierWOS:000297434000002
dc.identifierhttp://www.naturalspublishing.com/Article.asp?ArtcID=91
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/883331
dc.descriptionIn this work we consider a transmission problem for the longitudinal displacement of a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation. We use semigroup theory to prove existence and uniqueness of solutions. We apply a general results due to L. Gearhart [5] and J. Pruss [10] in the study of asymptotic behavior of solutions and prove that the semigroup associated to the system is exponentially stable. A numerical scheme is presented,
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.languageeng
dc.publisherNatural Sciences Publishing Corporation
dc.relationApplied Mathematics & Information Sciences
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTransmission problem
dc.subjectExponencial stability
dc.subjectEuler-Bernoulli beam
dc.subjectKelvin-Voigt damping
dc.subjectSemigroup
dc.subjectNumerical scheme
dc.titleA Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
dc.typeOtro


Este ítem pertenece a la siguiente institución