dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBiasi, C.
dc.creatordos Santos, E. L.
dc.date2014-05-20T15:30:16Z
dc.date2016-10-25T18:05:43Z
dc.date2014-05-20T15:30:16Z
dc.date2016-10-25T18:05:43Z
dc.date2006-06-01
dc.date.accessioned2017-04-06T00:16:06Z
dc.date.available2017-04-06T00:16:06Z
dc.identifierSemigroup Forum. New York: Springer, v. 72, n. 3, p. 353-361, 2006.
dc.identifier0037-1912
dc.identifierhttp://hdl.handle.net/11449/39694
dc.identifierhttp://acervodigital.unesp.br/handle/11449/39694
dc.identifier10.1007/s00233-006-0601-x
dc.identifierWOS:000238024000002
dc.identifierhttp://dx.doi.org/10.1007/s00233-006-0601-x
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/882547
dc.descriptionOur objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.
dc.languageeng
dc.publisherSpringer
dc.relationSemigroup Forum
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectImplicit Function Theorem
dc.subjecttopological monoids
dc.subjecttopological groups
dc.subjectLie groups
dc.subjectgeneralized manifolds
dc.titleA homological version of the implicit function theorem
dc.typeOtro


Este ítem pertenece a la siguiente institución