dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Biasi, C. | |
dc.creator | dos Santos, E. L. | |
dc.date | 2014-05-20T15:30:16Z | |
dc.date | 2016-10-25T18:05:43Z | |
dc.date | 2014-05-20T15:30:16Z | |
dc.date | 2016-10-25T18:05:43Z | |
dc.date | 2006-06-01 | |
dc.date.accessioned | 2017-04-06T00:16:06Z | |
dc.date.available | 2017-04-06T00:16:06Z | |
dc.identifier | Semigroup Forum. New York: Springer, v. 72, n. 3, p. 353-361, 2006. | |
dc.identifier | 0037-1912 | |
dc.identifier | http://hdl.handle.net/11449/39694 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/39694 | |
dc.identifier | 10.1007/s00233-006-0601-x | |
dc.identifier | WOS:000238024000002 | |
dc.identifier | http://dx.doi.org/10.1007/s00233-006-0601-x | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/882547 | |
dc.description | Our objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | Semigroup Forum | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Implicit Function Theorem | |
dc.subject | topological monoids | |
dc.subject | topological groups | |
dc.subject | Lie groups | |
dc.subject | generalized manifolds | |
dc.title | A homological version of the implicit function theorem | |
dc.type | Otro | |