dc.creatorQuiñones Huatangari,Lenin
dc.creatorOchoa Toledo,Luis
dc.creatorGamarra Torres,Oscar
dc.creatorBazán Correa,José
dc.creatorDelgado Soto,Jorge
dc.creatorKemper Valverde,Nicolás
dc.date2020-06-01
dc.date.accessioned2023-09-25T15:18:34Z
dc.date.available2023-09-25T15:18:34Z
dc.identifierhttp://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-65422020000200109
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8824871
dc.descriptionResumen La red neuronal artificial (RNA) es un modelo computacional que emula el sistema neuronal biológico en el procesamiento de información; los modelos que se originan son adecuados con el propósito de describir pronósticos para tiempos prolongados, además de relaciones no lineales. Se utiliza esta herramienta con el fin de predecir parámetros físico-químicos y microbiológicos que influyen en la calidad de agua. La Fundación Nacional de Saneamiento de Estados Unidos propuso un índice de calidad de agua, conocido como NSF WQI. Este artículo describe el diseño, entrenamiento y uso del modelo de la red neuronal perceptrón de tres capas para el cálculo del NSF WQI del río Utcubamba y sus afluentes. Empleando el software Matlab y aplicando el algoritmo de entrenamiento de Levenberg-Marquardt, se encontró que la arquitectura óptima de la RNA es 6-12-1, además, el porcentaje para los conjuntos de entrenamiento, validación y prueba fue de 70 %, 10 % y 20 %, respectivamente. El rendimiento de la RNA se ha evaluado utilizando la raíz del error cuadrático medio (RMSE) y el coeficiente de correlación (R). Se mostraron correlaciones altas (mayores que 0.94) entre los valores medidos y predichos. Finalmente, la RNA propuesta ofrece una alternativa útil para el cálculo y la predicción del índice de calidad de agua en relación con el oxígeno disuelto (OD), la demanda bioquímica de oxígeno (DBO), nitratos, coliformes fecales, potencial de iones hidrógeno (pH) y la turbidez.
dc.formattext/html
dc.languagees
dc.publisherUniversidad UTE
dc.relation10.29019/enfoque.v11n2.633
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceEnfoque UTE v.11 n.2 2020
dc.subjectÍndice de calidad de agua
dc.subjectredes neuronales artificiales
dc.subjectperceptrón multicapa
dc.subjectparámetros físico químicos
dc.titleRed neuronal artificial para estimar un índice de calidad de agua
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución