dc.creatorVampa,Victoria
dc.creatorKowalski,Andres M.
dc.creatorLosada,Marcelo
dc.creatorPortesi,Mariela
dc.creatorHolik,Federico
dc.date2023-06-01
dc.date.accessioned2023-09-25T14:33:07Z
dc.date.available2023-09-25T14:33:07Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332023000100001
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8822027
dc.descriptionAbstract We apply different information quantifiers to the study of COVID-19 time series. First, we analyze how the fact of smoothing the curves alters the informational content of the series, by applying the permutation and wavelet entropies to the series of daily new cases using a sliding-window method. In addition, to study how coupled the curves associated with daily new cases of infections and deaths are, we compute the wavelet coherence. Our results show how information quantifiers can be used to analyze the unpredictable behavior of this pandemic in the short and medium terms.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.relation10.15517/rmta.v30i1.50554
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.30 n.1 2023
dc.subjectInformation theory
dc.subjectPermutation entropy
dc.subjectStatistical complexity
dc.subjectBandt-Pompe methodology
dc.subjectWavelet transform.
dc.titleInformation quantifiers and unpredictability in the COVID-19 time-series data
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución