dc.creatorRomán,Krishna
dc.creatorCumbicus,Andy
dc.creatorInfante,Saba
dc.creatorFonseca-Delgado,Rigoberto
dc.date2022-12-01
dc.date.accessioned2023-09-25T14:31:16Z
dc.date.available2023-09-25T14:31:16Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332022000200289
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8821483
dc.descriptionAbstract Deep neural network models (DGPs) can be represented hierarchically by a sequential composition of layers. When the prior distribution over the weights and biases are independently identically distributed, there is an equivalence with Gaussian processes (GP) in the limit of an infinite network width. DGPs are non-parametric statistical models used to characterize patterns of complex non-linear systems due to their flexibility, greater generalization capacity, and a natural way of making inferences about the parameters and states of the system. This article proposes a hierarchical Bayesian structure to model the weights and biases of a deep neural network. We deduce a general formula to calculate the integrals of Gaussian processes with non-linear transfer densities and obtain a kernel to estimate the covariance functions. In the methodology, we conduct an empirical study analyzing an electroencephalogram (EEG) database for diagnosing Alzheimer's disease. Additionally, the DGPs models are estimated and compared with the NN models for 5, 10, 50, 100, 500, and 1000 neurons in the hidden layer, considering two transfer functions: Rectified Linear Unit (ReLU) and hyperbolic Tangent (Tanh). The results show good performance in the classification of the signals. Finally, we use the mean square error as a goodness of fit measure to validate the proposed models, obtaining low estimation errors.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.relation10.15517/rmta.v29i2.48885
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.29 n.2 2022
dc.subjectdeep Gaussian process
dc.subjectAlzheimer disease
dc.subjectelectroencephalogram.
dc.titleDeep gaussian processes and infinite neural networks for the analysis of EEG signals in Alzheimer's diseases
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución