dc.creatorErdem,Mustafa
dc.creatorSafan,Muntaser
dc.creatorCastillo-Chavez,Carlos
dc.date2020-06-01
dc.date.accessioned2023-09-25T14:22:59Z
dc.date.available2023-09-25T14:22:59Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332020000100049
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8818764
dc.descriptionAbstract A delay differential equations epidemic model of SIQR (Susceptible-Infective-Quarantined-Recovered) type, with arbitrarily distributed periods in the isolation or quarantine class, is proposed. Its essential mathematical features are analyzed. In addition, conditions that support the existence of periodic solutions via Hopf bifurcation are identified. Nonexponential waiting times in the quarantine/isolation class lead not only to oscillations but can also support stability switches.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.relation10.15517/rmta.v27i1.39948
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.27 n.1 2020
dc.subjectdelay differential equation
dc.subjectintegro-differential equation
dc.subjectepidemic model
dc.subjectquarantine
dc.subjectstability switch
dc.subjectoscillations
dc.subjectstage structure.
dc.titleA delay differential equations model for disease transmission dynamics
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución