dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBalbo, Antonio Roberto
dc.creatorBaptista, Edméa Cássia
dc.creatorArenales, Marcos Nereu
dc.date2014-05-20T15:28:48Z
dc.date2016-10-25T18:03:59Z
dc.date2014-05-20T15:28:48Z
dc.date2016-10-25T18:03:59Z
dc.date2007-09-16
dc.date.accessioned2017-04-06T00:09:10Z
dc.date.available2017-04-06T00:09:10Z
dc.identifierEuropean Journal of Operational Research. Amsterdam: Elsevier B.V., v. 181, n. 3, p. 1607-1616, 2007.
dc.identifier0377-2217
dc.identifierhttp://hdl.handle.net/11449/38546
dc.identifierhttp://acervodigital.unesp.br/handle/11449/38546
dc.identifier10.1016/j.ejor.2006.03.036
dc.identifierWOS:000246290600046
dc.identifierhttp://dx.doi.org/10.1016/j.ejor.2006.03.036
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/881648
dc.descriptionThis paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationEuropean Journal of Operational Research
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectinterior point methods
dc.subjectlinear programming
dc.subjectsurface flatness problem
dc.subjectTchebyshev's norm
dc.titleAn adaptation of the dual-affine interior point method for the surface flatness problem
dc.typeOtro


Este ítem pertenece a la siguiente institución