dc.creatorHernández,Yunay
dc.creatorBeausoleil,Ricardo
dc.date2016-12-01
dc.date.accessioned2023-09-25T14:11:20Z
dc.date.available2023-09-25T14:11:20Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332016000200445
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8814682
dc.descriptionAbstractWe propose a new algorithm using tabu search to deal with biobjective clustering problems. A cluster is a collection of records that are similar to one other and dissimilar to records in other clusters. Clustering has applications in VLSI design, protein-protein interaction networks, data mining and many others areas. Clustering problems have been subject of numerous studies; however, most of the work has focused on single-objective problems. In the context of multiobjective optimization our aim is to find a good approximation to the Pareto front and provide a method to make decisions. As an application problem we present the zoning problem by allowing the optimization of two objectives.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.23 n.2 2016
dc.subjectcombinatorial data analysis
dc.subjectclustering
dc.subjecttabu search
dc.subjectmultiobjective optimization
dc.titleClustering problems in a multiobjective framework
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución