dc.creatorRíos,Ricardo
dc.creatorRibó,Alexandre
dc.creatorMejía,Roberto
dc.creatorMolina,Giovanni
dc.date2016-06-01
dc.date.accessioned2023-09-25T14:10:58Z
dc.date.available2023-09-25T14:10:58Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332016000100155
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8814530
dc.descriptionAbstractThis contribution describes the creation of a landslide hazard assessment model for San Salvador, a department in El Salvador. The analysis started with an aerial photointerpretation from Ministry of Environment and Natural Resources of El Salvador (MARN Spanish acronym), where 4792 landslides were identified and georeferenced along with 7 conditioning factors including: geomorphology, geology, rainfall intensity, peak ground acceleration, slope angle, distance to road, and distance to geological fault. Artificial Neural Networks (ANN) were utilized to assess the susceptibility to landslides, achieving results where more than 80% of landslide were properly classified using in-sample and out of sample criteria. Logistic regression was used as base of comparison. Logistic regression obtained a lower performance. To complete the analysis we have performed interpolation of the points using the kriging method from geostatistical approach. Finally, the results show that is possible to derive a landslide hazard map, making use of a combination of ANNs and geostatistical techniques, thus the present study can help landslide mitigation in El Salvador.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.23 n.1 2016
dc.subjectlandslide
dc.subjecthazard assessment
dc.subjectEl Salvador
dc.subjectANN
dc.subjectgeostatistics
dc.subjectartificial neural networks
dc.subjectkriging
dc.titleCombining neural networks andgeostatistics for landslide hazardassessment of San Salvador metropolitan area, El Salvador
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución