dc.creatorVampa,Victoria
dc.creatorMartín,María T
dc.date2015-06-01
dc.date.accessioned2023-09-25T14:06:00Z
dc.date.available2023-09-25T14:06:00Z
dc.identifierhttp://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332015000100005
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8812673
dc.descriptionIn this paper an Adaptive Wavelet-Galerkin method for the solution of parabolic partial differential equations modeling physical problems with different spatial and temporal scales is developed. A semi-implicit time difference scheme is applied and B-spline multiresolution structure on the interval is used. As in many cases these solutions are known to present localized sharp gradients, local error estimators are designed and an efficient adaptive strategy to choose the appropriate scale for each time is developed. Finally, experiments were performed to illustrate the applicability and efficiency of the proposed method.
dc.formattext/html
dc.languageen
dc.publisherCentro de Investigaciones en Matemática Pura y Aplicada (CIMPA) y Escuela de Matemática, San José, Costa Rica.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRevista de Matemática Teoría y Aplicaciones v.22 n.1 2015
dc.subjectB-spline
dc.subjectmultiresolution analysis
dc.subjectwavelet-Galerkin
dc.titleAn adaptive wavelet-galerkin method for parabolic partial differential equations
dc.typeinfo:eu-repo/semantics/article


Este ítem pertenece a la siguiente institución