dc.contributorUniversidad Nacional de Asunción - Facultad Politécnica
dc.creatorVon Haebler, Jonas
dc.creatorBlanco Bogado, Gerardo Alejandro
dc.date2022-04-23T22:24:59Z
dc.date2022-04-23T22:24:59Z
dc.date2017
dc.date.accessioned2023-09-25T13:31:41Z
dc.date.available2023-09-25T13:31:41Z
dc.identifierhttp://hdl.handle.net/20.500.14066/3229
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8807553
dc.descriptionIn course of the German power system transition to a higher share of renewable energy sources decentralized activities constitute a major driving force for the growth of renewable en ergy capacity. In this context plural activities and initiatives on the local and regional level are followed to develop concepts for an efficient and sustainable regional energy supply. To achieve these goals various objectives has to be simultaneously accom plished. Generally, these objectives contradict to each other and cannot be handled by a single optimization technique. This paper proposes a multiobjective (MO) optimization approach for iden tifying efficient DG generation portfolios regarding multiple ob jectives. The methodology presented allows the planner to decide the best trade-off between the self-supply degree, environmental impact and electricity generation cost. The proposal applies, in a study case, a MO genetic algorithm that allows identifying a set of non-inferior Pareto-optimal solutions.
dc.descriptionCONACYT - Consejo Nacional de Ciencias y Tecnología
dc.descriptionPROCIENCIA
dc.languageeng
dc.relation14-INV-271
dc.rightsopen access
dc.subject5 Energía
dc.subjectDISTRIBUTED GENERATION
dc.subjectPORTFOLIO ANALYSIS
dc.subjectMULTI OBJECTIVE PROGRAMMING
dc.subjectGENETIC ALGORITHMS
dc.subjectENERGIA ELECTRICA
dc.titleModelling of efficient distributed generation porfolios using a multiobjective optimization approach
dc.typeresearch article


Este ítem pertenece a la siguiente institución