dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorde Albuquerque, L. C.
dc.creatorDeLyra, J. L.
dc.date2014-05-20T15:24:14Z
dc.date2016-10-25T17:58:24Z
dc.date2014-05-20T15:24:14Z
dc.date2016-10-25T17:58:24Z
dc.date2003-11-20
dc.date.accessioned2017-04-05T23:46:16Z
dc.date.available2017-04-05T23:46:16Z
dc.identifierModern Physics Letters A. Singapore: World Scientific Publ Co Pte Ltd, v. 18, n. 33-35, p. 2517-2524, 2003.
dc.identifier0217-7323
dc.identifierhttp://hdl.handle.net/11449/34882
dc.identifierhttp://acervodigital.unesp.br/handle/11449/34882
dc.identifier10.1142/S0217732303012763
dc.identifierWOS:000186856100027
dc.identifierhttp://dx.doi.org/10.1142/S0217732303012763
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/878719
dc.descriptionWe use the framework of noncommutative geometry to define a discrete model for fluctuating geometry. Instead of considering ordinary geometry and its metric fluctuations, we consider generalized geometries where topology and dimension can also fluctuate. The model describes the geometry of spaces with a countable number n of points. The spectral principle of Connes and Chamseddine is used to define dynamics. We show that this simple model has two phases. The expectation value <n>, the average number of points in the universe, is finite in one phase and diverges in the other. Moreover, the dimension delta is a dynamical observable in our model, and plays the role of an order parameter. The computation of <delta> is discussed and an upper bound is found, <delta> < 2. We also address another discrete model defined on a fixed d = 1 dimension, where topology fluctuates. We comment on a possible spontaneous localization of topology.
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationModern Physics Letters A
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectquantum gravity
dc.subjectnoncommutative geometry
dc.subjectrandom matrix theory
dc.titleFluctuating commutative geometry
dc.typeOtro


Este ítem pertenece a la siguiente institución