dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorHEC Montréal and CIRRELT
dc.creatorFiorotto, Diego Jacinto [UNESP]
dc.creatorAraujo, Silvio Alexandre de [UNESP]
dc.creatorJans, Raf
dc.date2016-03-02T13:04:24Z
dc.date2016-03-02T13:04:24Z
dc.date2015
dc.date.accessioned2023-09-12T08:51:13Z
dc.date.available2023-09-12T08:51:13Z
dc.identifierhttp://dx.doi.org/10.1016/j.cor.2015.04.015
dc.identifierComputers & Operations Research, v. 63, p. 136-148, 2015.
dc.identifier0305-0548
dc.identifierhttp://hdl.handle.net/11449/135782
dc.identifier10.1016/j.cor.2015.04.015
dc.identifier2533297944605843
dc.identifier9919773182316062
dc.identifier0000-0002-4762-2048
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8785014
dc.descriptionWe consider the capacitated lot sizing problem with multiple items, setup time and unrelated parallel machines, and apply Dantzig–Wolfe decomposition to a strong reformulation of the problem. Unlike in the traditional approach where the linking constraints are the capacity constraints, we use the flow constraints, i.e. the demand constraints, as linking constraints. The aim of this approach is to obtain high quality lower bounds. We solve the master problem applying two solution methods that combine Lagrangian relaxation and Dantzig–Wolfe decomposition in a hybrid form. A primal heuristic, based on transfers of production quantities, is used to generate feasible solutions. Computational experiments using data sets from the literature are presented and show that the hybrid methods produce lower bounds of excellent quality and competitive upper bounds, when compared with the bounds produced by other methods from the literature and by a high-performance MIP software.
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionNatural Sciences and Engineering Research Council of Canada
dc.descriptionUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática Aplicada, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265 (DCCE), Jardim Nazareth, CEP 15054-000, SP, Brasil
dc.descriptionHEC Montréal and CIRRELT, Canada H3T 2A7 QC, Canada
dc.descriptionUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática Aplicada, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265 (DCCE), Jardim Nazareth, CEP 15054-000, SP, Brasil
dc.descriptionFAPESP: 2010/16727-9
dc.descriptionFAPESP: 2013/00965-6
dc.descriptionFAPESP:2011/22647-0
dc.descriptionNatural Sciences and Engineering Research Council of Canada: 342182-09
dc.format136-148
dc.languagepor
dc.relationComputers & Operations Research
dc.relation2.962
dc.relation1,916
dc.rightsAcesso restrito
dc.sourceCurrículo Lattes
dc.subjectLot sizing
dc.subjectParallel machines
dc.subjectReformulation
dc.subjectHybrid methods
dc.subjectDantzig–Wolfe decomposition
dc.subjectLagrangian relaxation
dc.subjectProblema de dimensionamento de lotes
dc.subjectRelaxação lagrangiana
dc.subjectGeração de colunas
dc.titleHybrid methods for lot sizing on parallel machines
dc.typeArtigo


Este ítem pertenece a la siguiente institución