dc.contributorUniversidade de Aveiro
dc.contributorObservatoire de Paris
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.creatorCorreia, Alexandre C. M.
dc.creatorBouee, Gwenacl
dc.creatorLaskar, Jacques
dc.creatorRodrieguez, Adrian [UNESP]
dc.date2015-11-03T18:23:37Z
dc.date2015-11-03T18:23:37Z
dc.date2014-11-01
dc.date.accessioned2023-09-12T07:13:49Z
dc.date.available2023-09-12T07:13:49Z
dc.identifierhttp://www.aanda.org/articles/aa/abs/2014/11/aa24211-14/aa24211-14.html
dc.identifierAstronomy &astrophysics. Les Ulis Cedex A: Edp Sciences S A, v. 571, p. 1-16, 2014.
dc.identifier0004-6361
dc.identifierhttp://hdl.handle.net/11449/130310
dc.identifier10.1051/0004-6361/201424211
dc.identifierWOS:000345282600061
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8779621
dc.descriptionIn this paper we present a new approach to tidal theory. Assuming a Maxwell viscoelastic rheology, we compute the instantaneous deformation of celestial bodies using a differential equation for the gravity field coefficients. This method allows large eccentricities and it is not limited to quasi-periodic perturbations. It can take into account an extended class of perturbations, including chaotic motions and transient events. We apply our model to some already detected eccentric hot Jupiters and super-Earths in planar configurations. We show that when the relaxation time of the deformation is larger than the orbital period, spin-orbit equilibria arise naturally at half-integers of the mean motion, even for gaseous planets. In the case of super-Earths, these equilibria can be maintained for very low values of eccentricity. Our method can also be used to study planets with complex internal structures and other rheologies.
dc.descriptionPNP-CNRS
dc.descriptionCS of Paris Observatory
dc.descriptionFrance-Portugal program
dc.descriptionFCT-Portugal
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
dc.descriptionDepartamento de Física, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
dc.descriptionInstituto de Geociências e Ciências Exatas, UNESP, Av. 24-A 1515, CEP 13506-900, Rio Claro, SP, Brazil
dc.descriptionFrance-Portugal program: PICS05998
dc.descriptionFCT-Portugal: PEst-C/CTM/LA0025/2011
dc.descriptionFAPESP: 2009/16900-5
dc.descriptionFAPESP: 2012/13731-0
dc.format1-16
dc.languageeng
dc.publisherEdp Sciences S A
dc.relationAstronomy &astrophysics
dc.relation2,265
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCelestial mechanics
dc.subjectPlanets and satellites: general
dc.titleDeformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology
dc.typeArtigo


Este ítem pertenece a la siguiente institución