dc.contributorUniversidade Federal de São Paulo (UNIFESP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.creatorJorge, Grasiele C.
dc.creatorAndrade, Antonio Aparecido de [UNESP]
dc.creatorCosta, Sueli I. R.
dc.creatorStrapasson, Joao E.
dc.date2015-10-22T06:45:45Z
dc.date2015-10-22T06:45:45Z
dc.date2015-05-01
dc.date.accessioned2023-09-12T07:02:31Z
dc.date.available2023-09-12T07:02:31Z
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S0021869315000526
dc.identifierJournal Of Algebra. San Diego: Academic Press Inc Elsevier Science, v. 429, p. 218-235, 2015.
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11449/129764
dc.identifier10.1016/j.jalgebra.2014.12.044
dc.identifierWOS:000352183600009
dc.identifier8940498347481982
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8779094
dc.descriptionThe aim of this paper is to investigate rotated versions of the densest known lattices in dimensions 2, 3, 4, 5, 6, 7, 8, 12 and 24 constructed via ideals and free Z-modules that are not ideals in subfields of cyclotomic fields. The focus is on totally real number fields and the associated full diversity lattices which may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. We also discuss on the existence of a number field K such that it is possible to obtain the lattices A(2), E-6 and E-7 via a twisted embedding applied to a fractional ideal of O-K. (C) 2015 Elsevier Inc. All rights reserved.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionUniv Fed Sao Paulo, UNIFESP, BR-12247014 Sao Jose Dos Campos, SP, Brazil
dc.descriptionSao Paulo State Univ, UNESP, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.descriptionUniv Estadual Campinas, UNICAMP, BR-13083859 Campinas, SP, Brazil
dc.descriptionUniv Estadual Campinas, UNICAMP, BR-13484350 Limeira, SP, Brazil
dc.descriptionSao Paulo State Univ, UNESP, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.descriptionCNPq: 150802/2012-9
dc.descriptionCNPq: 312926/2013-8
dc.descriptionFAPESP: 2013/25977-7
dc.format218-235
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal Of Algebra
dc.relation0.675
dc.relation1,187
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectAlgebraic number theory
dc.subjectLattices
dc.subjectPacking density
dc.subjectDiversity
dc.subjectMinimum product distance
dc.subjectCoding theory
dc.titleAlgebraic constructions of densest lattices
dc.typeArtigo


Este ítem pertenece a la siguiente institución