dc.contributorInstituto Tecnológico de Aeronáutica (ITA)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.creatorPereira, Alex
dc.creatorSaotome, Osamu
dc.creatorSampaio, Daniel Souza [UNESP]
dc.date2015-10-22T06:25:28Z
dc.date2015-10-22T06:25:28Z
dc.date2015-02-25
dc.date.accessioned2023-09-12T07:00:42Z
dc.date.available2023-09-12T07:00:42Z
dc.identifierhttp://jivp.eurasipjournals.com/content/2015/1/6
dc.identifierEurasip Journal On Image And Video Processing. Cham: Springer International Publishing Ag, v. 2015, n. 6, p. 1-11, 2015.
dc.identifier1687-5281
dc.identifierhttp://hdl.handle.net/11449/129661
dc.identifier10.1186/s13640-015-0060-y
dc.identifierWOS:000356723200001
dc.identifierWOS000356723200001.pdf
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8778996
dc.descriptionThis paper presents an approach to classify static foreground blobs in surveillance scenarios. Possible application is the detection of abandoned and removed objects. In order to classify the blobs, we developed two novel features based on the assumption that the neighborhood of a removed object is fairly continuous. In other words, there is a continuity, in the input frame, ranging from inside the corresponding blob contour to its surrounding region. Conversely, it is usual to find a discontinuity, i.e., edges, surrounding an abandoned object. We combined the two features to provide a reliable classification. In the first feature, we use several local histograms as a measure of similarity instead of previous attempts that used a single one. In the second, we developed an innovative method to quantify the ratio of the blob contour that corresponds to actual edges in the input image. A representative set of experiments shows that the proposed approach can outperform other equivalent techniques published recently.
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionInstituto Tecnológico de Aeronáutica (ITA), Praça Mal. Eduardo Gomes, 50, São José dos Campos, BR, CEP 12.228-900
dc.descriptionUniversidade Estadual Paulista, Av. Ariberto Pereira da Cunha, 333, Guaratinguetá, BR, CEP 12.516-410
dc.format1-11
dc.languageeng
dc.publisherSpringer
dc.relationEurasip Journal On Image And Video Processing
dc.relation1.737
dc.relation0,409
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectAbandoned and removed object detection
dc.subjectVideo surveillance
dc.subjectVideo segmentation
dc.titlePatch-based local histograms and contour estimation for static foreground classification
dc.typeArtigo


Este ítem pertenece a la siguiente institución