dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorBuzzi, Claudio Aguinaldo
dc.creatorLlibre, Jaume
dc.creatorMedrado, João Carlos da Rocha
dc.date2014-05-20T15:22:56Z
dc.date2016-10-25T17:56:45Z
dc.date2014-05-20T15:22:56Z
dc.date2016-10-25T17:56:45Z
dc.date2007-11-15
dc.date.accessioned2017-04-05T23:39:21Z
dc.date.available2017-04-05T23:39:21Z
dc.identifierJournal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B. V., v. 335, n. 2, p. 1335-1346, 2007.
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11449/33824
dc.identifierhttp://acervodigital.unesp.br/handle/11449/33824
dc.identifier10.1016/j.jmaa.2007.02.011
dc.identifierWOS:000248854000042
dc.identifierWOS000248854000042.pdf
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2007.02.011
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/877861
dc.descriptionFor a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B. V.
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPeriodic orbits
dc.subjectQuadratic vector fields
dc.subjectReversibility
dc.titlePeriodic orbits for a class of reversible quadratic vector field on R-3
dc.typeOtro


Este ítem pertenece a la siguiente institución