dc.contributor | Marconato, Suzinei Aparecida Siqueira [UNESP] | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.creator | Afuso, Anderson Yassuhiro [UNESP] | |
dc.date | 2015-06-17T19:34:13Z | |
dc.date | 2015-06-17T19:34:13Z | |
dc.date | 2014-09-29 | |
dc.date | 2014 | |
dc.date.accessioned | 2023-09-12T05:10:18Z | |
dc.date.available | 2023-09-12T05:10:18Z | |
dc.identifier | AFUSO, Anderson Yassuhiro. Métodos numéricos para encontrar zeros de funções: aplicações para o Ensino Médio. 2014. 63 p. Dissertação - (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2014. | |
dc.identifier | http://hdl.handle.net/11449/123895 | |
dc.identifier | 000832285 | |
dc.identifier | http://www.athena.biblioteca.unesp.br/exlibris/bd/cathedra/29-05-2015/000832285.pdf | |
dc.identifier | 31075010001P2 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8773322 | |
dc.description | The functions studied in high school are summarized in polynomials of first and second degree, modular, exponential, logarithmic and trigonometric. The problems to find zeros of functions are recurrent and assist in constructing the graphs and their analysis. Thus, this dissertation aims to present three numerical methods (methods of bisection, Newton-Raphson and secant) to find the zeros of function. In particular, the Newton-Raphson method is an example of a discrete equation which the fixed point will be the zero of function. The theory of discrete equations will be discussed in Chapter 3. Chapter 4 outlines the graphical method which introduces the numerical methods. Following, in Chapter 5, 6 and 7, is that, in fact, we'll discuss the three numerical methods. Finally, we present a proposed activity for high school. In addition to finding the zeros of function, the numerical methods motivate the initial study of recurrence, limits and derivatives. Furthermore, the applications of methods in the classroom can be performed with the aid of mathematical software to work with spreadsheets and charts | |
dc.description | As funções estudadas no Ensino Médio se resumem às polinomiais de primeiro e segundo grau, modulares, exponenciais, logarítmicas e trigonométricas. Os problemas de encontrar zeros de função são recorrentes e auxiliam na construção de gráficos e em suas análises. Dessa forma, o presente trabalho tem o objetivo de apresentar três métodos numéricos (métodos da bissecção, de Newton-Raphson e das secantes) para encontrar os zeros de função. Em especial, o método de Newton-Raphson é um exemplo de equação discreta, cujo ponto fixo será o zero da função. A teoria das Equações Discretas será abordada no Capítulo 3. No Capítulo 4, discutiremos o método gráfico que introduz os métodos numéricos. Na sequência, nos Capítulos 5, 6 e 7, é que, de fato, abordaremos os três métodos numéricos. Por fim, apresentamos uma proposta de atividade para o Ensino Médio. Para além de encontrar os zeros de função, os métodos numéricos motivam o estudo inicial de recorrência, limites e derivadas. Além disso, as aplicações dos métodos em sala de aula podem ser realizadas com o auxílio de softwares matemáticos que trabalhem com planilhas e gráficos | |
dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.format | 63 p. : il. | |
dc.language | por | |
dc.publisher | Universidade Estadual Paulista (Unesp) | |
dc.rights | Acesso aberto | |
dc.rights | LOCKSS system has permission to collect, preserve, and serve this Archival Unit | |
dc.source | Aleph | |
dc.subject | Mathematics - Study and teaching | |
dc.subject | Matemática - Estudo e ensino | |
dc.subject | Newton-Raphson, Metodo | |
dc.subject | Equações de diferença | |
dc.subject | Métodos gráficos | |
dc.subject | Ensino médio | |
dc.title | Métodos numéricos para encontrar zeros de funções: aplicações para o Ensino Médio | |
dc.type | Dissertação de mestrado | |