dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.creatorBarriga, Gladys Dorotea Cacsire [UNESP]
dc.creatorLouzada, Francisco
dc.date2015-03-18T15:54:04Z
dc.date2015-03-18T15:54:04Z
dc.date2014-11-01
dc.date.accessioned2023-09-09T11:10:37Z
dc.date.available2023-09-09T11:10:37Z
dc.identifierhttp://dx.doi.org/10.1016/j.stamet.2013.11.003
dc.identifierStatistical Methodology. Amsterdam: Elsevier Science Bv, v. 21, p. 23-34, 2014.
dc.identifier1572-3127
dc.identifierhttp://hdl.handle.net/11449/116751
dc.identifier10.1016/j.stamet.2013.11.003
dc.identifierWOS:000340336800002
dc.identifier5267593860042306
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8766236
dc.descriptionIn this paper we propose the zero-inflated COM-Poisson distribution. We develop a Bayesian analysis for our model via on Markov chain Monte Carlo methods. We discuss regression modeling and model selection, as well as, develop case deletion influence diagnostics for the joint posterior distribution based on the psi-divergence, which has several divergence measures as particular cases, such as the Kullback-Leibler (K-L), J-distance, L-1 norm and chi(2)-square divergence measures. The performance of our approach is illustrated in an artificial dataset as well as in a real dataset on an apple cultivar experiment. (C) 2014 Elsevier B.V. All rights reserved.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionSao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil
dc.descriptionUniv Sao Paulo, Dept Appl Maths & Stat, BR-05508 Sao Paulo, Brazil
dc.descriptionSao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil
dc.format23-34
dc.languageeng
dc.publisherElsevier B.V.
dc.relationStatistical Methodology
dc.relation0,378
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBayesian inference
dc.subjectCOM-Poisson distribution
dc.subjectKullback-Leibler distance
dc.subjectZero-inflated models
dc.titleThe zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnostic
dc.typeArtigo


Este ítem pertenece a la siguiente institución