dc.contributorCPqD
dc.contributorCompanhia Energet Minas Gerais CEMIG
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.creatorSantos, T. F. A.
dc.creatorVasconcelos, G. C. [UNESP]
dc.creatorSouza, W. A. de
dc.creatorCosta, M. L. [UNESP]
dc.creatorBotelho, E. C. [UNESP]
dc.date2015-03-18T15:53:40Z
dc.date2015-03-18T15:53:40Z
dc.date2015-01-01
dc.date.accessioned2023-09-09T11:08:20Z
dc.date.available2023-09-09T11:08:20Z
dc.identifierhttp://dx.doi.org/10.1016/j.matdes.2014.10.005
dc.identifierMaterials & Design. Oxford: Elsevier Sci Ltd, v. 65, p. 780-788, 2015.
dc.identifier0261-3069
dc.identifierhttp://hdl.handle.net/11449/116654
dc.identifier10.1016/j.matdes.2014.10.005
dc.identifierWOS:000345520000097
dc.identifier4378078337343660
dc.identifier0000-0001-8338-4879
dc.identifier0000-0001-8338-4879
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8766139
dc.descriptionThe increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.
dc.descriptionCemig
dc.descriptionANEEL RD program
dc.descriptionCPqD, Campinas, SP, Brazil
dc.descriptionCompanhia Energet Minas Gerais CEMIG, Belo Horizonte, MG, Brazil
dc.descriptionUniv Estadual Paulista, Dept Mat & Technol, Guaratingueta, SP, Brazil
dc.descriptionUniv Estadual Paulista, Dept Mat & Technol, Guaratingueta, SP, Brazil
dc.format780-788
dc.languageeng
dc.publisherElsevier B.V.
dc.relationMaterials & Design
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectAluminum conductor
dc.subjectCarbon fiber-reinforced polymer
dc.subjectGalvanic corrosion
dc.subjectTransmission cables
dc.titleSuitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation
dc.typeArtigo


Este ítem pertenece a la siguiente institución