dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal do Rio Grande do Norte (UFRN)
dc.contributorUniversidad de Córdoba Laboratorio de Química Inorgánica
dc.creatorXavier, Camila Soares [UNESP]
dc.creatorPaskocimas, Carlos Alberto
dc.creatorMotta, Fabiana Villela Da
dc.creatorAraújo, Vinícius Dantas
dc.creatorAragón, Maria José
dc.creatorTirado, José Luís
dc.creatorLavela, Pedro
dc.creatorLongo, Elson [UNESP]
dc.creatorDelmonte, Mauricio Roberto Bomio
dc.date2015-02-02T12:39:27Z
dc.date2015-02-02T12:39:27Z
dc.date2014-08-01
dc.date.accessioned2023-09-09T10:29:59Z
dc.date.available2023-09-09T10:29:59Z
dc.identifierhttp://dx.doi.org/10.1590/1516-1439.264714
dc.identifierMaterials Research. ABM, ABC, ABPol, v. 17, n. 4, p. 1065-1070, 2014.
dc.identifier1516-1439
dc.identifierhttp://hdl.handle.net/11449/114336
dc.identifier10.1590/1516-1439.264714
dc.identifierS1516-14392014000400033
dc.identifierS1516-14392014000400033.pdf
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8763899
dc.descriptionRechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Fe3O4 deserves great attention as one of the most important electrode active materials due to its high theoretical capacity (926 mAhg- 1), low cost, being environmental-friendly and naturally abundance in worldwide. A simple strategy to synthesize magnetite nanoparticles (Fe3O4) by microwave-assisted hydrothermal method in a short processing time without further treatment is reported. The material obtained was tested as anode active material for lithium ions batteries. Impedance spectroscopy revealed that small differences in cell performance on cycling observed between samples cannot be strictly correlated to cell resistance. A high reversible capacity of 768.5 mAhg- 1 at 1C over 50 cycles was demonstrated, suggesting its prospective use as anode material for high power lithium ion batteries.
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionUniversidade Estadual Paulista Instituto de Química
dc.descriptionUniversidade Federal do Rio Grande do Norte Departamento de Engenharia de Materiais Laboratório de Síntese Química de Materiais
dc.descriptionUniversidad de Córdoba Laboratorio de Química Inorgánica
dc.descriptionUniversidade Estadual Paulista Instituto de Química
dc.format1065-1070
dc.languageeng
dc.publisherABM, ABC, ABPol
dc.relationMaterials Research
dc.relation1.103
dc.relation0,398
dc.rightsAcesso aberto
dc.sourceSciELO
dc.subjectmagnetite
dc.subjectnanoparticles
dc.subjectMicrowave hydrothermal (MH)
dc.subjectLithium ion batteries
dc.subjectanode active material
dc.titleMicrowave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries
dc.typeArtigo


Este ítem pertenece a la siguiente institución