dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal da Paraíba (UFPB)
dc.contributorEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributorARS
dc.creatorSilva, M. J. [UNESP]
dc.creatorSanches, A. O. [UNESP]
dc.creatorMedeiros, E. S.
dc.creatorMattoso, L. H. C.
dc.creatorMcMahan, C. M.
dc.creatorMalmonge, J. A. [UNESP]
dc.date2014-12-03T13:11:51Z
dc.date2014-12-03T13:11:51Z
dc.date2014-07-01
dc.date.accessioned2023-09-09T10:19:07Z
dc.date.available2023-09-09T10:19:07Z
dc.identifierhttp://dx.doi.org/10.1007/s10973-014-3719-1
dc.identifierJournal Of Thermal Analysis And Calorimetry. Dordrecht: Springer, v. 117, n. 1, p. 387-392, 2014.
dc.identifier1388-6150
dc.identifierhttp://hdl.handle.net/11449/113650
dc.identifier10.1007/s10973-014-3719-1
dc.identifierWOS:000338120100045
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8763244
dc.descriptionCellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 A degrees C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young's modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionUNESP Univ Estadual Paulista, Fac Engn, Dept Fis & Quim, Ilha Solteira, SP, Brazil
dc.descriptionUniv Fed Paraiba, Dept Engn Mat, BR-58059900 Joao Pessoa, Paraiba, Brazil
dc.descriptionEmbrapa Instrumentacao CNPDIA, LNNA, Sao Carlos, SP, Brazil
dc.descriptionARS, Western Reg Res Ctr, USDA, Albany, CA 94710 USA
dc.descriptionUNESP Univ Estadual Paulista, Fac Engn, Dept Fis & Quim, Ilha Solteira, SP, Brazil
dc.format387-392
dc.languageeng
dc.publisherSpringer
dc.relationJournal of Thermal Analysis and Calorimetry
dc.relation2.209
dc.relation0,587
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectCellulose nanofibrils
dc.subjectCotton cellulose
dc.subjectPolyaniline
dc.subjectNatural rubber
dc.titleNanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils
dc.typeArtigo


Este ítem pertenece a la siguiente institución