dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.creatorCamargo, Rubens de Figueiredo [UNESP]
dc.creatorChiacchio, Ary Orozimbo
dc.creatorOliveira, Edmundo Capelas de
dc.date2014-12-03T13:11:46Z
dc.date2014-12-03T13:11:46Z
dc.date2013-03-06
dc.date.accessioned2023-09-09T10:17:03Z
dc.date.available2023-09-09T10:17:03Z
dc.identifierhttp://dx.doi.org/10.1186/1687-2770-2013-45
dc.identifierBoundary Value Problems. Cham: Springer International Publishing Ag, 11 p., 2013.
dc.identifier1687-2770
dc.identifierhttp://hdl.handle.net/11449/113526
dc.identifier10.1186/1687-2770-2013-45
dc.identifierWOS:000325705400001
dc.identifierWOS000325705400001.pdf
dc.identifier4894275157982649
dc.identifier0000-0001-7417-3308
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8763122
dc.descriptionWe discuss the one-sided Green's function, associated with an initial value problem and the two-sided Green's function related to a boundary value problem. We present a specific calculation associated with a differential equation with constant coefficients. For both problems, we also present the Laplace integral transform as another methodology to calculate these Green's functions and conclude which is the most convenient one. An incursion in the so-called fractional Green's function is also presented. As an example, we discuss the isotropic harmonic oscillator.
dc.descriptionUNESP, Fac Ciencias, Dept Matemat, BR-17033369 Bauru, SP, Brazil
dc.descriptionUniv Estadual Campinas, Imecc, Dept Matemat, BR-13081970 Campinas, SP, Brazil
dc.descriptionUNESP, Fac Ciencias, Dept Matemat, BR-17033369 Bauru, SP, Brazil
dc.format11
dc.languageeng
dc.publisherSpringer
dc.relationBoundary Value Problems
dc.relation1.156
dc.relation0,490
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.titleOne-sided and two-sided Green's functions
dc.typeArtigo


Este ítem pertenece a la siguiente institución