dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade de São Paulo (USP)
dc.creatorAfonso, S. M. [UNESP]
dc.creatorBonotto, E. M.
dc.creatorFederson, M.
dc.date2014-12-03T13:11:27Z
dc.date2014-12-03T13:11:27Z
dc.date2014-07-01
dc.date.accessioned2023-09-09T10:10:55Z
dc.date.available2023-09-09T10:10:55Z
dc.identifierhttp://projecteuclid.org/euclid.die/1399395750
dc.identifierDifferential and Integral Equations. Athens: Khayyam Publ Co Inc, v. 27, n. 7-8, p. 721-742, 2014.
dc.identifier0893-4983
dc.identifierhttp://hdl.handle.net/11449/113146
dc.identifierWOS:000336822900008
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8762758
dc.descriptionWe consider a class of functional differential equations subject to perturbations, which vary in time, and we study the exponential stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational exponential stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be exponentially stable. Then, we apply the results to get corresponding ones for impulsive functional differential equations. We also present an example of a delay differential equation with Perron integrable right-hand side where we apply our result.
dc.descriptionUniv Estadual Paulista, Dept Matemat, IGCE, BR-13506900 Sao Carlos, SP, Brazil
dc.descriptionUniv Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
dc.descriptionUniv Estadual Paulista, Dept Matemat, IGCE, BR-13506900 Sao Carlos, SP, Brazil
dc.format721-742
dc.languageeng
dc.publisherKhayyam Publ Co Inc
dc.relationDifferential And Integral Equations
dc.relation0.721
dc.relation0,904
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleOn exponential stability of functional differential equations with variable impulse perturbations
dc.typeArtigo


Este ítem pertenece a la siguiente institución