dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Sao Judas Tadeu
dc.contributorUniv Autonoma Barcelona
dc.contributorUniv Tecn Lisboa
dc.contributorUniversidade de São Paulo (USP)
dc.creatorBiscolla, Laura M. O. [UNESP]
dc.creatorLlibre, Jaume
dc.creatorOliva, Waldyr M.
dc.date2014-12-03T13:09:01Z
dc.date2014-12-03T13:09:01Z
dc.date2013-08-01
dc.date.accessioned2023-09-09T09:49:53Z
dc.date.available2023-09-09T09:49:53Z
dc.identifierhttp://dx.doi.org/10.1007/s00033-012-0279-8
dc.identifierZeitschrift Fur Angewandte Mathematik Und Physik. Basel: Springer Basel Ag, v. 64, n. 4, p. 991-1003, 2013.
dc.identifier0044-2275
dc.identifierhttp://hdl.handle.net/11449/111838
dc.identifier10.1007/s00033-012-0279-8
dc.identifierWOS:000321977600006
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8761497
dc.descriptionBy a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi.
dc.descriptionMICINN/FEDER
dc.descriptionAGAUR
dc.descriptionICREA Academia
dc.descriptionFCT (Portugal)
dc.descriptionUniv Estadual Paulista, BR-04026002 Sao Paulo, Brazil
dc.descriptionUniv Sao Judas Tadeu, BR-03166000 Sao Paulo, Brazil
dc.descriptionUniv Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
dc.descriptionUniv Tecn Lisboa, CAMGSD, ISR, Inst Super Tecn, P-1049001 Lisbon, Portugal
dc.descriptionUniv Sao Paulo, Dept Matemat Aplicada, Inst Matemat & Estat, BR-05508900 Sao Paulo, Brazil
dc.descriptionUniv Estadual Paulista, BR-04026002 Sao Paulo, Brazil
dc.descriptionMICINN/FEDERMTM 2008-03437
dc.descriptionAGAUR2009SGR 410
dc.descriptionFCT (Portugal)POC-TI/FEDER
dc.descriptionFCT (Portugal)PDCT/MAT/56476/2004
dc.format991-1003
dc.languageeng
dc.publisherSpringer
dc.relationZeitschrift fur Angewandte Mathematik und Physik
dc.relation1.711
dc.relation0,828
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectControl theory
dc.subjectRolling ball
dc.subjectKendall problem
dc.subjectHammersley problem
dc.titleThe rolling ball problem on the plane revisited
dc.typeArtigo


Este ítem pertenece a la siguiente institución