dc.contributorUniversidade Estadual Paulista (UNESP)
dc.creatorFerreira, J.
dc.creatorSantos, M. L.
dc.creatorMatos, M. P.
dc.creatorBastos, W. D.
dc.date2014-05-20T15:20:00Z
dc.date2016-10-25T17:53:00Z
dc.date2014-05-20T15:20:00Z
dc.date2016-10-25T17:53:00Z
dc.date2004-06-01
dc.date.accessioned2017-04-05T23:23:20Z
dc.date.available2017-04-05T23:23:20Z
dc.identifierMathematical and Computer Modelling. Oxford: Pergamon-Elsevier B.V., v. 39, n. 11-12, p. 1285-1295, 2004.
dc.identifier0895-7177
dc.identifierhttp://hdl.handle.net/11449/31370
dc.identifierhttp://acervodigital.unesp.br/handle/11449/31370
dc.identifier10.1016/j.mcm.2004.06.008
dc.identifierWOS:000223244500008
dc.identifierWOS000223244500008.pdf
dc.identifierhttp://dx.doi.org/10.1016/j.mcm.2004.06.008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/875929
dc.descriptionIn this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationMathematical and Computer Modelling
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectKirchhoff wave equation
dc.subjectnoncylindrical domain
dc.subjectexponential decay
dc.titleExponential decay for Kirchhoff wave equation with nonlocal condition in a noncylindrical domain
dc.typeOtro


Este ítem pertenece a la siguiente institución