dc.creator | Esparza-Leal, Héctor | |
dc.creator | Martínez-Moreno, Carlos G. | |
dc.creator | Ventura-Juárez, Javier | |
dc.creator | Quintanar, Jose Luis | |
dc.date | 14 de septiembre de 2022 | |
dc.date | 04 de noviembre de 2022 | |
dc.date | 2023-04-10T07:00:00Z | |
dc.date.accessioned | 2023-09-07T21:55:50Z | |
dc.date.available | 2023-09-07T21:55:50Z | |
dc.identifier | https://ciencia.lasalle.edu.co/svo/vol20/iss2/4 | |
dc.identifier | https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1506&context=svo | |
dc.identifier | https://ciencia.lasalle.edu.co/context/svo/article/1506/viewcontent/3.articulo_3_salud_visual_ocular_20_2.pdf | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8749354 | |
dc.description | El glaucoma es la principal causa de ceguera irreversible en todo el mundo. En resumen, es una neuropatía óptica progresiva multifactorial que se correlaciona con la muerte de las células ganglionares de la retina, trastornos de la cabeza del nervio óptico y desórdenes del campo visual. Recientemente se ha reportado que el acetato de leuprolida tiene propiedades neurotróficas, el objetivo de este trabajo fue determinar si su administración sistémica retrasa el proceso neurodegenerativo en un modelo experimental de glaucoma. Se incluyeron ratas Wistar divididas en tres grupos: 1) un grupo de control, 2) un grupo de glaucoma inducido por ácido hialurónico y 3) un grupo de glaucoma inducido por ácido hialurónico tratado con acetato de leuprolida intramuscular. Las respuestas eléctricas oculares a la luz se registraron mediante electrorretinografía simultánea de campo completo y los ojos se procesaron para el estudio histológico. Los resultados mostraron una mejora en la actividad eléctrica, una recuperación de fibras del nervio óptico, así como una reducción de la astrogliosis reactiva en el grupo tratado con acetato de leuprolida. En definitiva, el acetato de leuprolida es una nueva y potencial alternativa de tratamiento en el glaucoma, ya que frena el proceso neurodegenerativo. | |
dc.description | Glaucoma is the main cause of irreversible blindness worldwide. In short, it is a multifactorial progressive optic neuropathy that correlates with retinal ganglion cell death, optic nerve head disturbances, and visual field disorders. Leuprolide acetate have recently been reported to have neurotrophic properties, the aim of this work was to determine whether it´s systemic administration holds up the neurodegenerative process in an experimental glaucoma model. Wistar rats divided into three groups were included: 1) a control group, 2) a hyaluronic acid-induced glaucoma group, and 3) a hyaluronic acid-induced glaucoma group treated with intramuscular leuprolide acetate. The eye electrical responses to light were recorded by simultaneous full-field electroretinography, and the eyes were processed for histological study. The results showed an improvement in the electrical activity, a recovery of fibers from the optic nerve as well as a reduction of the reactive astrogliosis in the leuprolide acetate treated group. In short, leuprolide acetate is a new potential alternative treatment in glaucoma, as it holds up the neurodegenerative process. | |
dc.format | application/pdf | |
dc.format | e1491 | |
dc.language | eng | |
dc.publisher | Universidad de La Salle. Ediciones Unisalle | |
dc.relation | Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3): 262-267. Available from: https://doi.org/10.1136/bjo.2005.081224 | |
dc.relation | Adachi M, Takahashi K, Nishikawa M, Miki H, Uyama M. High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats. Gra Arch Clin Exp Ophthalmol. 1996;234(7): 445-451. Available from: https://doi.org/10.1007/BF02539411 | |
dc.relation | Zhang S, Wang H, Lu Q, Qing G, Wang N, Wang Y, et al. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Br Res. 2009;1303: 131-143. Available from: https://doi.org/10.1016/j.brainres.2009.09.029 | |
dc.relation | Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM. Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci. 2003;44(6): 2597-2605. Available from: https://doi.org/10.1167/iovs.02-0600 | |
dc.relation | Gallego-Ortega A, Norte-Muñoz M, de Imperial-Ollero JA, Bernal-Garro JM, Valiente-Soriano FJ, de la Villa Polo P, et al. Functional and morphological alterations in a glaucoma model of acute ocular hypertension. Prog Brain Res. 2020;256(1): 1-29. Available from: https://doi.org/10.1016/bs.pbr.2020.07.003 | |
dc.relation | Williams PR, Benowitz LI, Goldberg JL, He Z. Axon regeneration in the mammalian optic nerve. Annu Rev Vis Sci. 2020;6: 195-213. Available from: https://doi.org/10.1146/annurev-vision-022720-094953 | |
dc.relation | Rovere G, Nadal-Nicolas FM, Wang J, Bernal-Garro JM, García-Carrillo N, Villegas-Pérez MP, et al. Melanopsin-containing or non-melanopsin-containing retinal ganglion cell response to ocular hypertension with or without brain-derived neurotrophic factor neuroprotection. Investig Ophthalmol Vis Sci. 2016;57(15): 6652-6661. Available from: https://doi.org/10.1167/iovs.16-20146 | |
dc.relation | Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci. 2003;24(3): 656-672. Available from: https://doi.org/10.1016/s1044-7431(03)00228-8 | |
dc.relation | Logan A, Ahmed Z, Baird A, Gonzalez A, Berry M. Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain J Neurol. 2006;129(Pt 2): 490-502. Available from: https://doi.org/10.1093/brain/awh706 | |
dc.relation | Jo SA, Wang E, Benowitz LI. Ciliary neurotrophic factor is an axogenesis factor for retinal ganglion cells. Neuroscience. 1999;89(2): 579-591. Available from: https://doi.org/10.1016/s0306-4522(98)00546-6 | |
dc.relation | Hernández-Jasso I, Domínguez-Del-Toro E, Delgado-García JM, Quintanar JL. Recovery of sciatic nerve with complete transection in rats treated with leuprolide acetate: A gonadotropin-releasing hormone agonist. Neurosci Lett. 2020;739: 135439. Available from: https://doi.org/10.1016/j.neulet.2020.135439 | |
dc.relation | Díaz Galindo C, Gómez-González B, Salinas E, Calderón-Vallejo D, Hernández-Jasso I, Bautista E, et al. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats. Neural Regen Res. 2015;10(11): 1819-1824. Available from: https://doi.org/10.4103/1673-5374.170311 | |
dc.relation | Guzmán-Soto I, Salinas E, Hernández-Jasso I, Quintanar JL. Leuprolide acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis. Neurochem Res. 2012;37(10): 2190-2197. Available from: https://doi.org/10.1007/s11064-012-0842-x | |
dc.relation | Wilson AC, Meethal SV, Bowen RL, Atwood CS. Leuprolide acetate: a drug of diverse clinical applications. Exp Opinion Invest Drugs. 2007;16(11): 1851-1863. Available from: https://doi.org/10.1517/13543784.16.11.1851 | |
dc.relation | Altamira-Camacho M, Medina-Aguiñaga D, Cruz Y, Calderón-Vallejo D, Kovacs K, Rotondo F, et al. Leuprolide acetate, a GnRH agonist, improves the neurogenic bowel in ovariectomized rats with spinal cord injury. Dig Dis Sci. 2020;65(2): 423-430. Available from: https://doi.org/10.1007/s10620-019-05783-4 | |
dc.relation | Dubovy SR, Fernández MP, Echegaray JJ, Block NL, Unoki N, Pérez R, et al. Expression of hypothalamic neurohormones and their receptors in the human eye. Oncotarget. 2017;8(40): 66796-66814. Available from: https://doi.org/10.18632/oncotarget.18358 | |
dc.relation | Moreno MC, Aldana Marcos HJ, Croxatto JO, Sande PH, Campanelli J, Jaliffa CO, et al. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Exp Eye Res. 2005;81(1): 71-80. Available from: https://doi.org/10.1016/j.exer.2005.01.008 | |
dc.relation | Nguyen CT, Tsai TI, He Z, Vingrys AJ, Lee PY, Bui BV. Simultaneous recording of electroretinography and visual evoked potentials in anesthetized rats. J Vis Exp. 2016;(113): e54158. Available from: https://doi.org/10.3791/54158 | |
dc.relation | Bouhenni R, Dunmire J, Sewell A, Edward DP. Animal models of glaucoma. J Biomed Biotechnol. 2012: 692609. Available from: https://doi.org/10.1155/2012/692609 | |
dc.relation | Pang I-H, Clark AF. Inducible rodent models of glaucoma. Prog Retin Eye Res. 2020;75: 100799. Available from: https://doi.org/10.1016/j.preteyeres.2019.100799 | |
dc.relation | Benozzi J, Nahum LP, Campanelli JL, Rosenstein RE. Effect of hyaluronic acid on intraocular pressure in rats. Invest Ophthalmol Vis Sci. 2002;43(7): 2196-2200. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2123361 | |
dc.relation | Koppens Franzco J. Essentials in ophthalmology: glaucoma. Clin Experiment Ophthalmol. 2008;36(2): 187-188. Available from: https://doi.org/10.1111/j.1442-9071.2008.01688.x | |
dc.relation | Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol. 1996;25(2): 147-170. Available from: https://doi.org/10.1007/BF02284793 | |
dc.relation | Yin Y, De Lima S, Gilbert H, Hanovice NJ, Peterson SL, Sand R, et al. Optic nerve regeneration: A long view. Restor Neurol Neurosci. 2019;37(6): 525-544. Available from: https://doi.org/10.3233/RNN-190960 | |
dc.relation | Pernet V, Di Polo A. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival but leads to optic nerve dystrophy in vivo. Brain J Neurol. 2006;129(Pt 4): 1014-1026. Available from: https://doi.org/10.1093/brain/awl015 | |
dc.relation | Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea T, Kawaguchi R, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532(7598): 195-200. Available from: https://doi.org/10.1038/nature17623 | |
dc.relation | Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2014;20(2): 160-172. Available from: https://doi.org/10.1177/1073858413504466 | |
dc.relation | Georgiou AL, Guo L, Francesca Cordeiro MF, Salt TE. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma. Curr Eye Res. 2014;39(5): 472-486. Available from: https://doi.org/10.3109/02713683.2013.848902 | |
dc.relation | Chun M, Ju W, Kim KY, Lee MY, Hofmann HD, Kirsch M, et al. Upregulation of ciliary neurotrophic factor in reactive Müller cells in the rat retina following optic nerve transection. Brain Res. 2000;868(2): 358-362. Available from: https://doi.org/10.1016/s0006-8993(00)02305-2 | |
dc.relation | Valter K, Bisti S, Gargini C, Di Loreto S, Maccarone R, Cervetto L, Stone J; Time course of neurotrophic factor upregulation and retinal protection against light-induced damage after optic nerve section. Invest. Ophthalmol. Vis. Sci. 2005;46(5):1748-1754. Available from: https//doi.org/10.1167/iovs.04-0657 | |
dc.relation | Gargini C, Bisti S, Demontis GC, Valter K, Stone J, Cervetto L. Electroretinogram changes associated with retinal upregulation of trophic factors: observations following optic nerve section. Neuroscience. 2004;126(3): 775-783. Available from: https://doi.org/10.1016/j.neuroscience.2004.04.028 | |
dc.relation | Bok D, Yasumura D, Matthes MT, Ruiz A, Duncan JL, Chappelow AV, et al. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res. 2002;74(6): 719-735. Available from: https://doi.org/10.1006/exer.2002.1176 | |
dc.relation | Leibinger M, Andreadaki A, Gobrecht P, Levin E, Diekmann H, Fischer D. Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling. Mol Ther J Am Soc Gene Ther. 2016;24(10): 1712-1725. Available from: https://doi.org/10.1038/mt.2016.102 | |
dc.relation | Zhang Y, Williams PR, Jacobi A, Wang C, Goel A, Hirano AA, et al. Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs. Neuron. 2019;103(1): 39-51.e5. Available from: https://doi.org/10.1016/j.neuron.2019.04.033 | |
dc.relation | Wirsig-Wiechmann C, Wiechmann A. Vole retina is a target for gonadotropin-releasing hormone. Brain Res. 2002;950(1-2): 210-207. Available from: https://doi.org/10.1016/S0006-8993(02)03039-1 | |
dc.relation | Schang AL, Bleux C, Chenut MC, Ngô-Muller V, Quérat B, Jeanny JC, et al. Identification, and analysis of two novel sites of rat GnRH receptor gene promoter activity: the pineal gland and retina. Neuroendocrinology. 2013;97(2): 115-131. Available from: https://doi.org/10.1159/000337661 | |
dc.relation | Dubovy SR, Fernandez MP, Echegaray JJ, Block NL, Unoki N, Perez R, et al. Expression of hypothalamic neurohormones and their receptors in the human eye. Oncotarget. 2017;8(40): 66796-66814. Available from: https://doi.org/10.18632/oncotarget.18358 | |
dc.relation | Carmignoto G, Maffei L, Candeo P, Canella R, Comelli C. Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J Neurosci. 1989;9(4): 1263-1272. Available from: https://doi.org/10.1523/JNEUROSCI.09-04-01263.1989 | |
dc.relation | Barrera C, Kastin A, Fasold M, Banks W. Bidirectional saturable transport of LHRH across the blood-brain barrier. Am J Physiol. 1991;261(3 Pt 1): E312-318. | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | Acceso abierto | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | ceguera; baja visión; neurotrófico; regeneración | |
dc.subject | blindness; low vision; neurotrophic; regeneration | |
dc.subject | Eye Diseases | |
dc.subject | Optometry | |
dc.subject | Other Analytical, Diagnostic and Therapeutic Techniques and Equipment | |
dc.subject | Vision Science | |
dc.title | Leuprolide Acetate, a GnRH Agonist, Holds Up Neurodegeneration in an Experimental Glaucoma Model | |
dc.type | Artículo de investigación | |
dc.identifier.doi | https://doi.org/10.19052/sv.vol20.iss2.4 | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.content | Text | |
dc.type.coarversion | Versión publicada | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.identifier.instname | instname:Universidad de La Salle | |
dc.identifier.reponame | reponame:Ciencia Unisalle | |
dc.identifier.repo.url | repourl:https://ciencia.lasalle.edu.co/ | |
dc.relation.ispartofcitationissue | 2 | |
dc.relation.ispartofcitationvolume | 20 | |
dc.relation.ispartofjournal | Ciencia y Tecnología para la Salud Visual y Ocular | |
dc.title.translated | Acetato de leuprolida, agonista de la GnRH, retrasa la neurodegeneración en un modelo experimental de glaucoma | |