dc.creatorCarrizosa Murcia, Marcelo
dc.creatorReyes Forero, Víctor
dc.creatorAcosta Yepes, César
dc.date10 de junio de 2022
dc.date1 de septiembre de 2022
dc.date2023-02-22T08:00:00Z
dc.date.accessioned2023-09-07T21:42:07Z
dc.date.available2023-09-07T21:42:07Z
dc.identifierhttps://ciencia.lasalle.edu.co/svo/vol20/iss1/7
dc.identifierhttps://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1500&context=svo
dc.identifierhttps://ciencia.lasalle.edu.co/context/svo/article/1500/viewcontent/articulo_6_salud_visual_ocular_20_1.pdf
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8749004
dc.descriptionSegún estudios adelantados en Latinoamérica, se prevé que la prevalencia de la miopía aumentará a cifras considerables. En ese contexto, algunas hipótesis describen la función de la vitamina D en el aumento de la longitud axial. El objetivo del presente estudio es conocer la influencia de factores asociados con el desarrollo y la progresión de la miopía, como el medio ambiente y la nutrición, con el déficit de vitamina D. Se realizó dicho trabajo incluyendo revisiones de tema, ensayos clínicos y estudios comparativos, en español o inglés, que hayan sido publicados entre los años 2005 y 2018. Esta revisión se llevó a cabo con ayuda de diferentes bases de datos. Así, diversas hipótesis describen una función de la vitamina D en el crecimiento del ojo, y una se centra en la vitamina D y su relación con la dopamina. En tanto, estudios epidemiológicos sugieren que mayor cantidad de tiempo al aire libre es un factor ambiental modificable y protector para los niños frente al desarrollo de la miopía. Se evidenció una relación entre el déficit de vitamina D y el crecimiento ocular, lo cual genera miopía, desde el punto de vista de la síntesis de la vitamina D, como los factores genéticos que alteran la longitud axial ocular.
dc.descriptionAccording to advanced studies in Latin America, it is expected that the prevalence of myopia will increase to considerable numbers. In such context, some hypotheses describe the role of vitamin D in increasing axial length. The objective of this study is to know the influence of factors associated with the development and progression of myopia, such as the environment and nutrition, with vitamin D deficiency. Such work was carried out, including subject reviews, clinical trials, and comparative studies in Spanish or English, published between 2005 and 2018. The review was carried out with the help of different databases. Various hypotheses describe the role of vitamin D in eye growth; one focuses on vitamin D and its relationship with dopamine. Also, epidemiological studies suggest that spending more time outdoors is a modifiable and protective environmental factor for children against the development of myopia. A relationship between vitamin D deficiency and ocular growth was evidenced, which generates myopia, from the point of view of vitamin D synthesis and genetic factors that alter the ocular axial length.
dc.formatapplication/pdf
dc.formate0006
dc.languagespa
dc.publisherUniversidad de La Salle. Ediciones Unisalle
dc.relationFoster PJ, Jiang Y. Epidemiology of myopia. Eye. 2014;28(2): 202-208. Disponible en: https://www.nature.com/articles/eye2013280
dc.relationBrito A, Cori H, Olivares M, Mujica MF, Cediel G, Lopez de Romana D. Less than adequate vitamin D status and intake in Latin America and the Caribbean: a problem of unknown magnitude. Food Nutr Bull. 2013;34(1): 52-64. Disponible en: https://doi.org/10.1177/156482651303400107
dc.relationRusso A, Semeraro F, Romano MR, Mastropasqua R, Dell’Omo R, Costagliola C. Myopia onset and progression: can it be prevented? Int Ophthalmol. 2014;34(3): 693-705. Disponible en: https://doi.org/10.1007/s10792-013-9844-1
dc.relationCuellar-Partida G, Williams KM, Yazar S, Guggenheim JA, Hewitt AW, Williams C, et al. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. Int J Epidemiol. 2017;46(6): 1882-1890. Disponible en: https://doi.org/10.1093/ije/dyx068
dc.relationYoon K-C, Mun G-H, Kim S-D, Kim S-H, Kim CY, Park KH, et al. Prevalence of eye diseases in South Korea: data from the Korea National Health and Nutrition Examination Survey 2008-2009. Korean J Ophthalmol. 2011;25(6): 421-433. Disponible en: https://doi.org/10.3341/kjo.2011.25.6.421
dc.relationRose KA, French AN, Morgan IG. Environmental factors and myopia: paradoxes and prospects for prevention. Asia Pac J Ophthalmol. 2016;5(6): 403-410. Disponible en: https://doi.org/10.1097/APO.0000000000000233
dc.relationHolden B, Sankaridurg P, Smith E, Aller T, Jong M, He M. Myopia, an underrated global challenge to vision: where the current data takes us on myopia control. Eye. 2014;28(2): 142-146. Disponible en: https://doi.org/10.1038/eye.2013.256
dc.relationWalline J. Myopia control: a review. Eye Cont L. 2016;42(1): 3-8. Disponible en: https://doi.org/10.1097/ICL.0000000000000207
dc.relationJones LA, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8): 3524-3532. Disponible en: https://doi.org/10.1167/iovs.06-1118
dc.relationDonovan L, Sankaridurg P, Ho A, Chen X, Lin Z, Thomas V, et al. Myopia progression in Chinese children is slower in summer than in winter. Opto Vis Sci. 2012;89(8): 1196-1202. Disponible en: https://doi.org/10.1097/OPX.0b013e3182640996
dc.relationTan D, Tay SA, Loh KL, Chia A. Topical atropine in the control of myopia. Asia-Pac J Ophthalmol. 2016;5(6): 424-428. Disponible en: https://doi.org/10.1097/APO.0000000000000232
dc.relationXiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Act Ophthalmol. 2017;95(6):551-566. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599950
dc.relationHoel DG, Berwick M, de Gruijl FR, Holick MF. The risks and benefits of sun exposure 2016. Dermatoendocrinol. 2016;8(1): e1248325. Disponible en: https://doi.org/10.1080/19381980.2016.1248325
dc.relationYazar S, Hewitt AW, Black LJ, McKnight CM, Mountain JA, Sherwin JC, et al. Myopia is associated with lower vitamin D status in young adults. Invest Ophthalmol Vis Sci. 2014;55(7): 4552-4559. Disponible en: https://doi.org/10.1167/iovs.14-14589
dc.relationGuggenheim JA, Williams C, Northstone K, Howe LD, Tilling K, St Pourcain B, et al. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Invest Ophthalmol Vis Sci. 2014;55(12): 8550-8558. Disponible en: https://doi.org/10.1167/iovs.14-15839
dc.relationMutti DO, Marks AR. Blood levels of vitamin D in teens and young adults with myopia. Optom Vis Sci. 2011;88(3): 377-382. Disponible en: https://doi.org/10.1097/OPX.0b013e31820b0385
dc.relationChoi JA, Han K, Park Y-M, La TY. Low serum 25-hydroxyvitamin D is associated with myopia in Korean adolescents. Invest Ophthalmol Vis Sci. 2014;55(4): 2041-2047. Disponible en: https://doi.org/10.1167/IOVS.13-12853
dc.relationGuggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012;53(6): 2856-2865. Disponible en: https://doi.org/10.1167/iovs.11-9091
dc.relationJones-Jordan LA, Sinnott LT, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Time Outdoors, Visual Activity, and Myopia Progression in Juvenile-Onset Myopes. Invest Ophthalmol Vis Sci. 2012;53(11): 7169-7175. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474591/
dc.relationGalvis V, Tello A, Camacho PA, Parra MM, Merayo-Lloves J. Bio-environmental factors associated with myopia: An updated review. Arch Soc Esp Oftalmol. 2017;92(7): 307-325. Disponible en: https://doi.org/10.1016/j.oftal.2016.11.016
dc.relationWu P-C, Tsai C-L, Wu H-L, Yang Y-H, Kuo H-K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5): 1080-1085. Disponible en: https://doi.org/10.1016/j.ophtha.2012.11.009
dc.relationZorena K, Gladysiak A, Slezak D. Early Intervention and Nonpharmacological Therapy of Myopia in Young Adults. J Ophthalmol. 2018: 4680603. Disponible en: https://doi.org/10.1155/2018/4680603
dc.relationHolden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5): 1036-10342. Disponible en: https://doi.org/10.1016/j.ophtha.2016.01.006
dc.relationJonas JB, Xu L. Histological changes of high axial myopia. Eye. 2014;28(2): 113-117. Disponible en: https://www.nature.com/articles/eye2013223
dc.relationMinistry of Health and Social Protection. Situation Analysis of Visual Health in Colombia. 2016; Conv 519 of 2015: 49-56.
dc.relationGlade MJ. A 21st century evaluation of the safety of oral vitamin D. Nutrition. 2012;28(4): 344-356. Disponible en: https://doi.org/10.1016/j.nut.2011.11.006
dc.relationHobday R. Myopia and daylight in schools: a neglected aspect of public health? Perspect Public Hea. 2016;136(1): 50-55. Disponible en: https://doi.org/10.1177/1757913915576679
dc.relationYazar S, Hewitt AW, Black LJ, McKnight CM, Mountain JA, Sherwin JC, et al. Myopia is associated with lower vitamin D status in young adults. Investig Opthalmology Vis Sci. 2014;55(7): 4552. Disponible en: https://doi.org/10.1167/iovs.14-14589
dc.relationSmith MJ, Walline JJ. Controlling myopia progression in children and adolescents. Adolesc Heal Med Ther. 2015;6: 133-140. Disponible en: https://doi.org/10.2147/AHMT.S55834
dc.relationLow W, Dirani M, Gazzard G, Chan Y-H, Zhou H-J, Selvaraj P, et al. Family history, near work, outdoor activity, and myopia in Singapore Chinese preschool children. Brit Jour Ophthal. 2010;94(8): 1012-1016. Disponible en: https://doi.org/10.1136/bjo.2009.173187
dc.relationRamamurthy D, Lin Chua SY, Saw S-M. A review of environmental risk factors for myopia during early life, childhood and adolescence. Clin Exp Optom. 2015;98(6): 497-506. Disponible en: https://doi.org/10.1111/cxo.12346
dc.relationTideman JWL, Polling JR, Voortman T, Jaddoe VWV, Uitterlinden AG, Hofman A, et al. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur J Epidemiol. 2016;31: 491-499. Disponible en: https://doi.org/10.1007/s10654-016-0128-8
dc.relationMutti DO, Cooper ME, Dragan E, Jones-Jordan LA, Bailey MD, Marazita ML, et al. Vitamin D receptor (VDR) and group-specific component (GC, vitamin D-binding protein) polymorphisms in myopia. Invest Ophthalmol Vis Sci. June 2011;52(6): 3818-3824. Disponible en: https://doi.org/10.1167/iovs.10-6534
dc.relationAshby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11): 5348-5354. Disponible en: https://doi.org/10.1167/iovs.09-3419
dc.relationFrench AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114: 58-68. Disponible en: https://doi.org/10.1016/j.exer.2013.04.018
dc.relationRey-Rodríguez DV, Álvarez-Peregrina C, Moreno-Montoya J. Prevalencia y factores asociados a miopía en jóvenes. Rev Mex Oftalmol. 2017;91(5): 223-228. Disponible en: https://doi.org/10.1016/j.mexoft.2016.06.007
dc.relationMutti DO. Vitamin D may reduce the prevalence of myopia in Korean adolescents. Invest Ophthalmol Vis Sci. 2014;55(4): 2048. Disponible en: https://doi.org/10.1167/iovs.14-14117
dc.relationJT Siegwart, Norton TT. Perspective: How Might Emmetropization and Genetic Factors Produce Myopia in Normal Eyes? 2011;88(3): E365–E372. Disponible en: https://doi.org/10.1097/OPX.0b013e31820b053d
dc.relationWu P-C, Tsai C-L, Wu H-L, Yang Y-H, Kuo H-K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5): 1080-1085. Disponible en: https://doi.org/10.1016/j.ophtha.2012.11
dc.relationAnnamaneni S, Bindu CH, Reddy KP, Vishnupriya S. Association of vitamin D receptor gene start codon (Fok1) polymorphism with high myopia. Oman J Ophthalmol. 2011;4(2): 57-62. Disponible en: https://doi.org/ 10.4103/0974-620X.83654
dc.relationReins RY, McDermott AM. Vitamin D: Implications for ocular disease and therapeutic potential. Exp Eye Res. 2015;134: 101-110. Disponible en: https://doi.org/10.1016/j.exer.2015.02.019
dc.relationPan C-W, Qian D-J, Saw S-M. Time outdoors, blood vitamin D status and myopia: a review. Photo Photobio Sci. 2017;16(3): 426-432. Disponible en: https://doi.org/10.1039/c6pp00292g
dc.relationKwon J-W, Choi JA, La TY. Serum 25-hydroxyvitamin D level is associated with myopia in the Korea national health and nutrition examination survey. Medicine (Baltimore). 2016;95(46): e5012. Disponible en: https://doi.org/10.1097/MD.0000000000005012
dc.relationFlitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31(6): 622-660. Disponible en: https://doi.org/10.1016/j.preteyeres.2012.06.004
dc.relationTang S, Lau T, Rong SS, Yazar S, Chen LJ, Mackey DA, et al. Vitamin D and its pathway genes in myopia: systematic review and meta-analysis. Bri J Opthal. 2018;103(1). Disponible en: http://dx.doi.org/10.1136/bjophthalmol-2018-312159
dc.relationWacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Derm Endocrinol. 2013;5(1): 51-108. Disponible en: https://doi.org/10.4161/derm.24494
dc.relationMcKnight C, Sherwin JC, Yazar S, Forward H, Tan AX, Hewitt AW, et al. Myopia in young adults is inversely related to an objective marker of ocular sun exposure: the Western Australian Raine cohort study. Am J Ophtahalmol. 2014;158(5): 1079-1085. Disponible en: https://doi.org/10.1016/j.ajo.2014.07.033
dc.relationJin J-X, Hua W-J, Jiang X, Wu X-Y, Yang J-W, Gao G-P, et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast china: the sujiatun eye care study. BMC Ophthalmol. 2015;15(73). Disponible en: https://doi.org/10.1186/s12886-015-0052-9
dc.relationLingham G, Milne E, Cross D, English DR, Johnston RS, Lucas RM, et al. Investigating the long-term impact of a childhood sun-exposure intervention, with a focus on eye health: protocol for the Kidskin-Young Adult Myopia Study. Brit J Opth. 2018. Disponible en: http://dx.doi.org/10.1136/bmjopen-2017-020868
dc.relationHwang H, Chun MY, Kim JS, Oh B, Yoo SH, Cho B-J. Risk Factors for High Myopia in Koreans: The Korea National Health and Nutrition Examination Survey. Curr Eye Res. 2018;43(8). Disponible en: https://doi.org/10.1080/02713683.2018.1472286
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcceso abierto
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectMiopía
dc.subjectfactores ambientales en miopía
dc.subjectdéficit de vitamina D
dc.subjectaumento de prevalencia de miopía
dc.subjectMyopia, environmental factors in myopia, vitamin D deficiency, increased prevalence of myopia
dc.titleDéficit de vitamina D en relación con el desarrollo y la progresión de la miopía
dc.typeArtículo de revisión
dc.identifier.doihttps://doi.org/10.19052/sv.vol20.iss1.7
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREV
dc.type.contentText
dc.type.coarversionVersión publicada
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.instnameinstname:Universidad de La Salle
dc.identifier.reponamereponame:Ciencia Unisalle
dc.identifier.repo.urlrepourl:https://ciencia.lasalle.edu.co/
dc.relation.ispartofcitationissue1
dc.relation.ispartofcitationvolume20
dc.relation.ispartofjournalCiencia y Tecnología para la Salud Visual y Ocular
dc.title.translatedVitamin D Deficiency in Relation to the Development and Progression of Myopia


Este ítem pertenece a la siguiente institución