dc.contributor | Valero Valdivieso, Manuel Fernando | |
dc.date.accessioned | 2017-03-03T19:29:18Z | |
dc.date.accessioned | 2023-09-07T16:25:47Z | |
dc.date.available | 2017-03-03T19:29:18Z | |
dc.date.available | 2023-09-07T16:25:47Z | |
dc.date.created | 2017-03-03T19:29:18Z | |
dc.date.issued | 2017-03-03 | |
dc.identifier | Adamczak, M. I., Hagesaether, E., Smistad, G., & Hiorth, M. (2016). An in vitro study of mucoadhesion
and biocompatibility of polymer coated liposomes on HT29-MTX mucus-producing cells.
International Journal of Pharmaceutics, 498(1–2), 225–33.
https://doi.org/10.1016/j.ijpharm.2015.12.030 | |
dc.identifier | Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., … Heras, A. (2009). Functional
Characterization of Chitin and Chitosan. Current Chemical Biology, 3(2), 203–230.
https://doi.org/10.2174/187231309788166415 | |
dc.identifier | Arévalo, S., & Ramirez, C. (2015). Síntesis, Caracterización y Degradabilidad in vitro de Polímeros
Obtenidos de Aceite de Higuerilla y Quitosano. | |
dc.identifier | Bakhshi, H., Yeganeh, H., Mehdipour-Ataei, S., Shokrgozar, M. A., Yari, A., & Saeedi-Eslami, S. N.
(2013). Synthesis and characterization of antibacterial polyurethane coatings from quaternary
ammonium salts functionalized soybean oil based polyols. Materials Science and Engineering: C,
33(1), 153–164. https://doi.org/10.1016/j.msec.2012.08.023 | |
dc.identifier | Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings
containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological
properties. Journal of Materials Science, 49(15), 5365–5377. https://doi.org/10.1007/s10853-014-
8244-x | |
dc.identifier | Berridge, M. V, Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights
into their cellular reduction. Biotechnology Annual Review, 11, 127–52.
https://doi.org/10.1016/S1387-2656(05)11004-7 | |
dc.identifier | Berridge, M. V, & Tan, A. S. (1993). Characterization of the Cellular Reduction of 3.pdf. Archives of Biochemestry and Biophisics, 474–482. Retrieved from
http://www.sciencedirect.com.ezproxy.unisabana.edu.co/science/article/pii/S0003986183713111 | |
dc.identifier | Brown, R. P., & Fustinoni, S. (2015). Chapter 5 – Toxicity of Metals Released from Implanted Medical
Devices. In Handbook on the Toxicology of Metals (pp. 113–122). https://doi.org/10.1016/B978-0-
444-59453-2.00005-6 | |
dc.identifier | Caon, T., Zanetti-Ramos, B. G., Lemos-Senna, E., Cloutet, E., Cramail, H., Borsali, R., … Simões, C. M.
O. (2010). Evaluation of DNA damage and cytotoxicity of polyurethane-based nano- and
microparticles as promising biomaterials for drug delivery systems. Journal of Nanoparticle
Research, 12(5), 1655–1665. https://doi.org/10.1007/s11051-009-9828-2 | |
dc.identifier | Castañeda Ramírez, C., De la Fuente Salcido, N. M., Pacheco Cano, R. D., Ortiz-Rodriguez, T., &
Barbosa Corona, J. E. (2011). Potencial de los quito-oligosacáridos generados de quitina y
quitosana. Acta Universitaria, 21(3), 14–23. | |
dc.identifier | Castro, C. (2006). Pruebas de tamizaje para determinar efectos citotóxicos en extractos, fracciones o
sustancias, utilizando la prueba MTT. Universidad San Martín. Retrieved from
http://old.iupac.org/publications/cd/medicinal_chemistry/Practica-IV-2.pdf | |
dc.identifier | Chapdelaine, J. M. (n.d.). MTT reduction -a tetrazolium-based colorimetric assay for cell survival and
proliferation. | |
dc.identifier | Chen, Y., Tang , H., Liu , Y., & Tan, H. (2016). Preparation and study on the volume phase transition
properties of novel carboxymethyl chitosan grafted polyampholyte superabsorbent polymers.
Journal of the Taiwan Institute of Chemical Engineers, 59, 569–577.
https://doi.org/10.1016/j.jtice.2015.09.011 | |
dc.identifier | Chen, Y., Zhou, Y., Yang, S., Li, J. J., Li, X., Ma, Y., … Yu, B. (2016). Novel bone substitute composed
of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and
evaluation of biocompatibility. Materials Science and Engineering: C, 66, 84–91.
https://doi.org/10.1016/j.msec.2016.04.070 | |
dc.identifier | Chien, R.-C., Yen, M.-T., & Mau, J.-L. (2015). Antimicrobial and antitumor activities of chitosan from
shiitake stipes, compared to commercial chitosan from crab shells. Carbohydrate Polymers, 138,
259–264. https://doi.org/10.1016/j.carbpol.2015.11.061 | |
dc.identifier | Crichton, M. L., Chen, X., Huang, H., & Kendall, M. A. F. (2013). Elastic modulus and viscoelastic
properties of full thickness skin characterised at micro scales. Biomaterials, 34(8), 2087–2097.
https://doi.org/10.1016/j.biomaterials.2012.11.035 | |
dc.identifier | Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer
Journal, 49(4), 780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009 | |
dc.identifier | De Souza, J. F., Maia, K. N., De Oliveira Patrício, P. S., Fernandes-Cunha, G. M., Da Silva, M. G., De
Matos Jensen, C. E., & Da Silva, G. R. (2016). Ocular inserts based on chitosan and brimonidine
tartrate: Development, characterization and biocompatibility. Journal of Drug Delivery Science and
Technology, 32, 21–30. https://doi.org/10.1016/j.jddst.2016.01.008 | |
dc.identifier | Deng, M., Zhou, J., Chen, G., Burkley, D., Xu, Y., Jamiolkowski, D., & Barbolt, T. (2005). Effect of load
and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
Biomaterials, 26, 4327–4336. https://doi.org/10.1016/j.biomaterials.2004.09.067 | |
dc.identifier | Dragostin, O. M., Samal, S. K., Dash, M., Lupascu, F., Pânzariu, A., Tuchilus, C., … Profire, L. (2016).
New antimicrobial chitosan derivatives for wound dressing applications. Carbohydrate Polymers,
141, 28–40. https://doi.org/10.1016/j.carbpol.2015.12.078 | |
dc.identifier | Dutta, S., Karak, N., Saikia, J. P., & Konwar, B. K. (2009). Biocompatible epoxy modified bio-based
polyurethane nanocomposites: Mechanical property, cytotoxicity and biodegradation. Bioresource
Technology, 100(24), 6391–6397. https://doi.org/10.1016/j.biortech.2009.06.029 | |
dc.identifier | ESCOBAR M, L., RIVERA, A., & ARISTIZÁBAL G, F. A. (2010). ESTUDIO COMPARATIVO DE
LOS MÉTODOS DE RESAZURINA Y MTT EN ESTUDIOS DE CITOTOXICIDAD EN
LÍNEAS CELULARES TUMORALES HUMANAS. Vitae, 17(1), 67–74. | |
dc.identifier | Ghorbanian, L., Emadi, R., Razavi, S. M., Shin, H., & Teimouri, A. (2013). Fabrication and
characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in
maxillofacial bone regeneration. International Journal of Biological Macromolecules, 58, 275–80.
https://doi.org/10.1016/j.ijbiomac.2013.04.004 | |
dc.identifier | Gómez, A. A. (n.d.). El fibroblasto: su origen, estructura, funciones y heterogeneidad dentro del
periodonto Fibroblast: its origin, structure, functions and heterogeneity within the periodontium. | |
dc.identifier | Habiba, U., Islam, M. S., Siddique, T. A., Afifi, A. M., & Ang, B. C. (2016). Adsorption and
photocatalytic degradation of anionic dyes on Chitosan/PVA/Na–Titanate/TiO2 composites
synthesized by solution casting method. Carbohydrate Polymers, 149, 317–331.
https://doi.org/10.1016/j.carbpol.2016.04.127 | |
dc.identifier | He, J., He, F.-L., Li, D.-W., Liu, Y.-L., & Yin, D.-C. (2016). A novel porous Fe/Fe-W alloy scaffold with
a double-layer structured skeleton: Preparation, in vitro degradability and biocompatibility. Colloids
and Surfaces. B, Biointerfaces, 142, 325–33. https://doi.org/10.1016/j.colsurfb.2016.03.002 | |
dc.identifier | ISO, 10993-5 DIN EN. (n.d.). Biological evaluation of medical devices — Part 5: Tests for in vitro
cytotoxicity. Retrieved April 28, 2016, from https://www.iso.org/obp/ui/#iso:std:iso:10993:-5:ed-
3:v1:en | |
dc.identifier | Janik, H., & Marzec, M. (2015). A review: Fabrication of porous polyurethane scaffolds. Materials
Science and Engineering: C, 48, 586–591. https://doi.org/10.1016/j.msec.2014.12.037 | |
dc.identifier | Kwan, S., & Marić, M. (2016). Thermoresponsive polymers with tunable cloud point temperatures
grafted from chitosan via nitroxide mediated polymerization. Polymer, 86, 69–82.
https://doi.org/10.1016/j.polymer.2016.01.039 | |
dc.identifier | La Rosa, A. D. (2016). 4 – Life cycle assessment of biopolymers. In Biopolymers and Biotech
Admixtures for Eco-Efficient Construction Materials (pp. 57–78). https://doi.org/10.1016/B978-0-
08-100214-8.00004-X | |
dc.identifier | López-Saucedo, F., Alvarez-Lorenzo, C., Concheiro, A., & Bucio, E. (2016). Radiation-grafting of vinyl
monomers separately onto polypropylene monofilament sutures.
https://doi.org/10.1016/j.radphyschem.2016.11.006 | |
dc.identifier | Macocinschi, D., Filip, D., Vlad, S., Butnaru, M., & Knieling, L. (2013). Evaluation of polyurethane
based on cellulose derivative-ketoprofen biosystem for implant biomedical devices. International
Journal of Biological Macromolecules, 52, 32–7. https://doi.org/10.1016/j.ijbiomac.2012.09.026 | |
dc.identifier | http://hdl.handle.net/10818/29878 | |
dc.identifier | 263585 | |
dc.identifier | TE08924 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8736791 | |
dc.description.abstract | En el presente trabajo se evaluaron materiales poliméricos a partir del aceite de higuerilla, por medio de transesterificación se obtuvieron tres variaciones de polioles (183, 196 y 236 mg KOH/g). Los cuales reaccionaron con diisocianato de isoforona para conformar una matriz de poliuretano, adicionalmente se incorporó quitosano en diferentes concentraciones (0, 2.5, 5 y 7.5 %p/p) con el fin de mejorar la viabilidad celular del polímero. El objetivo del estudio se centró en determinar el efecto de la adición de quitosano a la matriz de poliuretano sobre la viabilidad celular y así establecer si la mezcla tiene potencial para ser usada en aplicaciones biomédicas. Se evaluó la viabilidad celular in vitro de los polímeros y de sus extractos por medio del ensayo MTT sobre fibroblastos embrionarios de ratón L-929 (ATCC® CCL-1). Adicionalmente, se estudió una degradación acelerada de éstos en buffer fosfato a una temperatura de 105ºC por 72 horas. Se encontró que el incremento en la funcionalidad del poliol favorece la viabilidad celular y la adición de quitosano no afecta la proliferación celular. Además, se evidenció la resistencia a la degradación con valores menores a 1%. Con base en los resultados obtenidos, se concluyó que los polímeros pueden tener un alto potencial en aplicaciones biomédicas. | |
dc.language | spa | |
dc.publisher | Universidad de La Sabana | |
dc.publisher | Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | restrictedAccess | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.source | Universidad de la Sabana | |
dc.source | Intellectum Repositorio Universidad de la Sabana | |
dc.subject | Ingeniería química | |
dc.subject | Fusión nuclear | |
dc.subject | Compatibilidad -- Pruebas | |
dc.title | Evaluación de la citotoxicidad de poliuretanos a partir de aceite de higuerilla y quitosano | |
dc.type | bachelorThesis | |