dc.creatorArgyros, Christopher I.
dc.creatorArgyros, Michael I
dc.creatorArgyros, Ioannis K
dc.creatorMagreñán, Á. Alberto
dc.creatorSarría, Íñigo
dc.date.accessioned2023-08-24T13:38:30Z
dc.date.accessioned2023-09-07T15:21:21Z
dc.date.available2023-08-24T13:38:30Z
dc.date.available2023-09-07T15:21:21Z
dc.date.created2023-08-24T13:38:30Z
dc.identifierArgyros, C., Argyros, M. I., Argyros, I. K., Magreñán, Á. A., & Sarría, Í. (2023). Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields. Journal of Computational and Applied Mathematics, 426, 115072.
dc.identifier0377-0427
dc.identifierhttps://reunir.unir.net/handle/123456789/15120
dc.identifierhttps://doi.org/10.1016/j.cam.2023.115072
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8732438
dc.description.abstractThe convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general conditions allowing the solution of nondifferentiable equations. Specializations of our methods improve earlier results. Numerical experiments display the superiority of our results.
dc.languageeng
dc.publisherJournal of Computational and Applied Mathematics
dc.relation;vol. 426
dc.relationhttps://www.sciencedirect.com/science/article/abs/pii/S037704272300016X?via%3Dihub
dc.rightsrestrictedAccess
dc.subjectbanach space
dc.subjectchebyshev-two point-like methods
dc.subjectlocal convergence
dc.subjectsemi-local convergence
dc.subjectScopus
dc.subjectJCR
dc.titleLocal and Semi-local convergence for Chebyshev two point like methods with applications in different fields
dc.typeArticulo Revista Indexada


Este ítem pertenece a la siguiente institución