dc.creatorLlopis, Juan Alberto
dc.creatorFernández-García, Antonio Jesús
dc.creatorCriado, Javier
dc.creatorIribarne, Luis
dc.date.accessioned2023-03-23T13:41:30Z
dc.date.accessioned2023-09-07T15:18:41Z
dc.date.available2023-03-23T13:41:30Z
dc.date.available2023-09-07T15:18:41Z
dc.date.created2023-03-23T13:41:30Z
dc.identifierJ. A. Llopis, A. J. Fernández-García, J. Criado and L. Iribarne, "Matching user queries in natural language with Cyber-Physical Systems using deep learning through a Transformer approach," 2022 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Biarritz, France, 2022, pp. 1-6, doi: 10.1109/INISTA55318.2022.9894230.
dc.identifier9781665498104
dc.identifierhttps://reunir.unir.net/handle/123456789/14410
dc.identifierhttps://doi.org/10.1109/INISTA55318.2022.9894230
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8731740
dc.description.abstractIoT devices, as a result of technological advancements, may have different ways of operating and communicating despite having the same features. Therefore, finding a specific device among the whole of deployed devices can be a difficult task. To help find devices in an efficient and timely way, we propose a recommender system using deep learning for matching W3C Web of Things artifacts (called as WoT devices) with natural language queries. The proposal uses the Transformer algorithm to study the usage of deep learning to facilitate searching for devices, assuming that the model can be used as a recommendation tool to match WoT devices in Cyber-Physical Systems.
dc.languageeng
dc.publisher16th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2022
dc.relationhttps://ieeexplore.ieee.org/document/9894230
dc.rightsrestrictedAccess
dc.subjectdeep learning
dc.subjectnatural language
dc.subjectrecommender system
dc.subjecttransformer
dc.subjectweb of things
dc.subjectScopus(2)
dc.titleMatching user queries in natural language with Cyber-Physical Systems using deep learning through a Transformer approach
dc.typeconferenceObject


Este ítem pertenece a la siguiente institución