dc.contributorPortilla Salinas, Jaime Antonio
dc.contributorGaray Talero, Alexander
dc.contributorRodríguez Angulo, Ricaurte
dc.contributorGrupo de Investigación en Compuestos Bio-orgánicos
dc.creatorGarcía Olave, Mayra Lizeth
dc.date.accessioned2023-01-11T19:59:33Z
dc.date.accessioned2023-09-07T02:32:49Z
dc.date.available2023-01-11T19:59:33Z
dc.date.available2023-09-07T02:32:49Z
dc.date.created2023-01-11T19:59:33Z
dc.date.issued2022-12-06
dc.identifierhttp://hdl.handle.net/1992/63710
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729464
dc.description.abstractEn este trabajo de investigación se obtuvieron sondas fluorescentes basadas en el núcleo heterocíclico pi-extendido de pirazolo[1,5-a]pirimidina (PP) con potencial aplicación en el marcado de biomoléculas. Considerando las propiedades fotofísicas que han mostrado algunas pirazolo[1,5-a]pirimidinas (PPs), se sintetizaron nuevos derivados sustituidos en la posición 3 con un grupo electrón-aceptor (A) y en la posición 7 con un grupo electrón-dador (D). Estas posiciones son estratégicas para favorecer el fenómeno de transferencia de carga intramolecular (TCI) mediante la resonancia en los respectivos sistemas D-pi-A que poseen una estructura plana. De este modo, se esperaría observar un fenómeno de solvatofluorocromismo destacado mediante el estudió del comportamiento de los nuevos compuestos en disolventes de diferente polaridad y de sus propiedades espectroscópicas, absortividad molar, rendimiento cuántico, desplazamiento de Stokes, y fotoestabilidad, junto con la estabilidad térmica. Para establecer el alcance y proyección de esta investigación, los resultados obtenidos se compararon con los estándares Prodan y Rhodamina 6G.
dc.description.abstractThis research aimed to obtain fluorescent probes based on the [pi]-extended heterocyclic core of pyrazolo[1,5-a]pyrimidine (PP) with potential application in labeling biomolecules. Considering the photophysical properties that some pyrazolo[1,5-a]pyrimidines (PPs) have shown, it was sought to synthesize new derivatives substituted in position 3 with an electron-accepting group (A) and in position 7 with an electron-donor group (D). These positions are strategic to favor intramolecular charge transfer (ICT) phenomena through resonance in the respective D-[pi]-A systems with a planar structure. In this way, it would be expected to observe a unique solvatofluorochromism phenomenon by studying the behavior of the new compounds in solvents of different polarity and their spectroscopic properties -molar absorptivity, quantum yield, Stokes shift, photostability- together with thermal stability. The results obtained in this research were compared with those of standards such as Prodan and Rhodamine 6G to establish the scope and potential.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Química
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Química
dc.relationWang, A. C.; Zhang, R.; Sakaguchi, K.; Yu, X.; Elsegood, M. R. J.; Teat, S. J. Two-Photon Absorption Properties of Pyrene-Based Dipolar D-[pi]-A Fluorophores. ChemPhotoChem 2018, 2 (8), 749-756. https://doi.org/10.1002/cptc.201800053.
dc.relationZhang, B.; Zhao, P.; Wilson, L. J.; Subbiah, J.; Yang, H.; Mulvaney, P.; Jones, D. J.; Ghiggino, K. P.; Wong, W. W. H. High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor - Emitter Fluorophore System. ACS Energy Lett 2019, 4 (8), 1839-1844. https://doi.org/10.1021/acsenergylett.9b01224.
dc.relationGodugu, K.; Shaik, S.; Khaja, M.; Pinjari, M.; Sarma, S.; Divi, H.; Venkatramu, V.; Gangi, C.; Nallagondu, R. Solid State Thiazole-Based Fluorophores: Promising Materials for White Organic Light Emitting Devices. Dyes and Pigments 2021, 187 (July 2020), 109077. https://doi.org/10.1016/j.dyepig.2020.109077.
dc.relationKim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J. I. Fluorescent Probe for Detection of Fluoride in Water and Bioimaging in A549 Human Lung Carcinoma Cells. Chemical Communications 2009, No. 31, 4735-4737. https://doi.org/10.1039/b908745a.
dc.relationGao, L.; Wang, W.; Wang, X.; Yang, F.; Xie, L.; Shen, J.; Brimble, M. A.; Xiao, Q.; Yao, S. Q. Fluorescent Probes for Bioimaging of Potential Biomarkers in Parkinson's Disease. Chem Soc Rev 2021, 50 (2), 1219-1250. https://doi.org/10.1039/d0cs00115e.
dc.relationTigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Current Chinese Science 2021, 1 (2), 197-206. https://doi.org/10.2174/2210298101999201208211116.
dc.relationCecilia Barría. La Carrera Por Los Codiciados "Minerales Del Futuro" Que Pueden Crear Gigantescas Fortunas e Influir En La Seguridad Nacional de Los Países. BBC News Mundo. 2022.
dc.relationZhang, J.; Ning, L.; Liu, J.; Wang, J.; Yu, B.; Liu, X.; Yao, X.; Zhang, Z.; Zhang, H. Naked-Eye and Near-Infrared Fluorescence Probe for Hydrazine and Its Applications in In Vitro and in Vivo Bioimaging. Anal Chem 2015, 87 (17), 9101-9107. https://doi.org/10.1021/acs.analchem.5b02527.
dc.relationTung, C. H.; Han, M. S.; Shen, Z.; Gray, B. D.; Pak, K. Y.; Wang, J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021, 6 (10), 3657-3666. https://doi.org/10.1021/acssensors.1c01370.
dc.relationBosch, P.; Catalina, F.; Corrales, T.; Peinado, C. Fluorescent Probes for Sensing Processes in Polymers. Chemistry - A European Journal 2005, 11 (15), 4314-4325. https://doi.org/10.1002/chem.200401349.
dc.relationParisio, G.; Marini, A.; Biancardi, A.; Ferrarini, A.; Mennucci, B. Polarity-Sensitive Fluorescent Probes in Lipid Bilayers: Bridging Spectroscopic Behavior and Microenvironment Properties. Journal of Physical Chemistry B 2011, 115 (33), 9980-9989. https://doi.org/10.1021/jp205163w.
dc.relationYang, X.; Sun, R.; Guo, X.; Wei, X.; Gao, J.; Xu, Y.; Ge, J. The Application of Bioactive Pyrazolopyrimidine Unit for the Construction of Fl Uorescent Biomarkers. Dyes and Pigments 2020, 173 (September 2019), 107878. https://doi.org/10.1016/j.dyepig.2019.107878.
dc.relationTigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196 (November 2018), 395-401. https://doi.org/10.1016/j.talanta.2018.12.100.
dc.relationStefanello, F. S.; Kappenberg, Y. G.; Araújo, J. N.; Franceschini, S. Z.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Trifluoromethyl-Substituted Aryldiazenyl-Pyrazolo[1,5-a] Pyrimidin-2-Amines: Regioselective Synthesis, Structure, and Optical Properties. J Fluor Chem 2022, 255-256 (February), 109967. https://doi.org/10.1016/j.jfluchem.2022.109967.
dc.relationStefanello, F. S.; Vieira, J. C. B.; Ara, J. N.; Souza, B.; Frizzo, C. P.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Solution and Solid-State Optical Properties of Trifluoromethylated 5- ( Alkyl/Aryl/Heteroaryl)-2-Methyl-Pyrazolo [1,5-a]Pyrimidine System. Photochem 2022, 2, 345-357. https://doi.org/10.3390/photochem2020024.
dc.relationOrtiz, M.-C.; Portilla, J. Access to Five-Membered N-Heteroaromatic Compounds: Current Approach Based on Microwave-Assisted Synthesis. Targets in Heterocyclic Systems 2021, 25, 436-462. https://doi.org/10.17374/targets.2022.25.436.
dc.relationRíos, M.-C.; Portilla, J. Recent Advances in Synthesis and Properties of Pyrazoles. Chemistry (Easton) 2022, 4 (3), 940-968. https://doi.org/10.3390/chemistry4030065.
dc.relationArias-Gómez, A.; Godoy, A.; Portilla, J. Functional Pyrazolo[1,5-a]Pyrimidines: Current Approaches in Synthetic Transformations and Uses As an Antitumor Scaffold. Molecules 2021, 26 (9), 1-35. https://doi.org/10.3390/molecules26092708.
dc.relationLavis, L. D.; Raines, R. T. Bright Ideas for Chemical Biology. ACS Chem Biol 2008, 3 (3), 142-155. https://doi.org/10.1021/cb700248m.
dc.relationBernard Valeur. Encyclopedia of Applied Spectroscopy; 2009.
dc.relationPaul, M. Branching Effect on the Linear and Nonlinear Optical Properties of Styrylpyrimidines. J Biomol Struct Dyn 2016, 22 (7), 1-27. https://doi.org/10.1080/07391102.2020.1758788.
dc.relationTigreros, A.; Ortiz, A.; Insuasty, B. Effect of p -Conjugated Linkage on Photophysical Properties : Acetylene Linker as the Better Connection Group for Highly Solvatochromic Probes. Dyes and Pigments 2014, 111, 45-51. https://doi.org/10.1016/j.dyepig.2014.05.035.
dc.relationMarini, A.; Mun, A.; Biancardi, A.; Mennucci, B. What Is Solvatochromism? Journal of Physical Chemistry B 2010, 114, 17128-17135. https://doi.org/10.1021/jp1097487.
dc.relationKucherak, O. A.; Didier, P.; Yves, M.; Klymchenko, A. S. Fluorene Analogues of Prodan with Superior Fluorescence Brightness and Solvatochromism. Journal of Physical Chemistry Letters 2010, 1 (3), 616-620. https://doi.org/10.1021/jz9003685.
dc.relationGong, Y.; Guo, X.; Wang, S.; Su, H.; Xia, A.; He, Q.; Bai, F. Photophysical Properties of Photoactive Molecules with Conjugated Push-Pull Structures. Journal of Physical Chemistry A 2007, 111 (26), 5806-5812. https://doi.org/10.1021/jp0705323.
dc.relationCastanheira, S.; Martinho, G. Solvatochromic Shifts of Naphthalene and Pyrene Excimers. J Photochem Photobiol A Chem 1994, 80, 151-156. https://doi.org/10.1016/1010-6030(93)01011-P.
dc.relationMittal, M.; Vol, E.; Press, P.; York, N.; Acta, S. B. B.; Press, P.; Weber, G.; Farris, F. J. Synthesis and Spectral Properties of a Hydrophobic Fluorescent Probe: 6-Propionyl-2- ( Dimet Hy1amino ) Napht Halenet. Biochemistry 1979, 18 (14), 3075-3078. https://doi.org/10.1021/bi00581a025.
dc.relationHagimori, M.; Karimine, Y.; Mizuyama, N.; Hara, F.; Fujino, T.; Saji, H.; Mukai, T. Selective Cadmium Fluorescence Probe Based on Bis-Heterocyclic Molecule and Its Imaging in Cells. J Fluoresc 2021, 31 (4), 1161-1167. https://doi.org/10.1007/s10895-021-02748-7.
dc.relationWei, Y. F.; Zhang, X. Q.; Sun, R.; Xu, Y. J.; Ge, J. F. Fluorescent Probes Based 1,8-Naphthalimide-Nitrogen Heterocyclic for Monitoring the Fluctuation of Mitochondrial Viscosity. Dyes and Pigments 2021, 194 (June), 109559. https://doi.org/10.1016/j.dyepig.2021.109559.
dc.relationJiang, X.; Shangguan, M.; Lu, Z.; Yi, S.; Zeng, X.; Zhang, Y.; Hou, L. A "Turn-on" Fluorescent Probe Based on V-Shaped Bis-Coumarin for Detection of Hydrazine. Tetrahedron 2020, 76 (7), 130921. https://doi.org/10.1016/j.tet.2020.130921.
dc.relationRíos; M.-C.; Bravo; N.-F.; Sánchez; C.-C.; Portilla; J. Chemosensors Based on N-Heterocyclic Dyes: Advances in Sensing Highly Toxic Ions Such as CN À. RSC Adv 2021, 11, 34206-34234. https://doi.org/10.1039/d1ra06567j.
dc.relationCastillo, J.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo [1,5-a]Pyrimidines through a One-Pot Sequence. RSC Adv 2017, 7 (45), 28483-28488. https://doi.org/10.1039/c7ra04336h.
dc.relationZhang, Y. C.; Zhang, B. W.; Geng, R. L.; Song, J. Enantioselective [3 + 2] Cycloaddition Reaction of Ethynylethylene Carbonates with Malononitrile Enabled by Organo/Metal Cooperative Catalysis. Org Lett 2018, 20 (24), 7907-7911. https://doi.org/10.1021/acs.orglett.8b03454.
dc.relationCastillo, J.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J Org Chem 2018, 83, 10887-10897. https://doi.org/10.1021/acs.joc.8b01571.
dc.relationAranzazu, S.; Tigreros, A.; Arias-g, A.; Zapata-rivera, J.; Portilla, J. BF3 Mediated Acetylation of Pyrazolo[1,5 a]Pyrimidines and Other - Excedent (N Hetero)Arenes. J Org Chem 2022, 87 (15), 9839-9850. https://doi.org/10.1021/acs.joc.2c00881.
dc.relationBedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angewandte Chemie - International Edition 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150.
dc.relationQuiroga, J.; Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Regioselective Formylation of Pyrazolo[3,4-b]Pyridine and Pyrazolo[1,5-a]Pyrimidine Systems Using Vilsmeier-Haack Conditions. Tetrahedron Lett 2008, 49 (17), 2689-2691. https://doi.org/10.1016/j.tetlet.2008.02.166.
dc.relationYoshida, M.; Mori, A.; Inaba, A.; Oka, M.; Makino, H.; Yamaguchi, M.; Fujita, H.; Kawamoto, T.; Goto, M.; Kimura, H.; Baba, A.; Yasuma, T. Synthesis and Structure-Activity Relationship of Tetrahydropyrazolopyrimidine Derivatives - A Novel Structural Class of Potent Calcium-Sensing Receptor Antagonists. Bioorg Med Chem 2010, 18 (24), 8501-8511. https://doi.org/10.1016/j.bmc.2010.10.035.
dc.relationSoares, C.; Melo, D.; Feng, T.; Westhuyzen, R. Van Der; Gessner, R. K.; Street, L. J.; Morgans, G. L.; Warner, D. F.; Moosa, A.; Naran, K.; Lawrence, N.; Boshoff, H. I. M.; Barry, C. E.; Harris, C. J.; Gordon, R.; Chibale, K. Bioorganic & Medicinal Chemistry Aminopyrazolo [ 1 , 5- a ] Pyrimidines as Potential Inhibitors of Mycobacterium Tuberculosis : Structure Activity Relationships and ADME Characterization. Bioorg Med Chem 2015, 23 (22), 7240-7250. https://doi.org/10.1016/j.bmc.2015.10.021.
dc.relationFelipe, L.; Azeredo, S. P.; Coutinho, J. P.; Jabor, V. A. P.; Feliciano, P. R.; Cristina, M.; Kaiser, C. R.; Maria, C.; Menezes, S.; Hammes, A. S. O.; Raul, E.; Hoelz, L. V. B.; Souza, N. B. De. Plasmodium Falciparum , Antimalarial , and Pf- Dihydroorotate Dehydrogenase Inhibitors. Eur J Med Chem 2017, 126, 72-83. https://doi.org/10.1016/j.ejmech.2016.09.073.
dc.relationAbe, M.; Seto, M.; Gogliotti, R. G.; Loch, M. T.; Bollinger, K. A.; Chang, S.; Engelberg, E. M.; Luscombe, V. B.; Harp, J. M.; Bubser, M.; Engers, D. W.; Jones, C. K.; Rodriguez, A. L.; Blobaum, A. L.; Conn, P. J.; Niswender, C. M.; Lindsley, C. W. Discovery of VU6005649, a CNS Penetrant MGlu7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5-a]Pyrimidines. ACS Med Chem Lett 2017, 8 (10), 1110-1115. https://doi.org/10.1021/acsmedchemlett.7b00317.
dc.relationPortilla, J.; Quiroga, J.; Cobo, J.; Low, J. N.; Glidewell, C. 7-Amino-2,5-Dimethylpyrazolo[1,5-a]-Pyrimidine Hemihydrate Redetermined at 120 K: A Three-Dimensional Hydrogen-Bonded Framework. Acta Crystallogr C 2006, 62 (4). https://doi.org/10.1107/S0108270106005373.
dc.relationTigreros, A.; Castillo, J.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo [ 1 , 5- a ] Pyrimidines : Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215 (January), 120905. https://doi.org/10.1016/j.talanta.2020.120905.
dc.relationTigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine-Triphenylamine Systems. Dyes and Pigments 2021, 184 (June 2020). https://doi.org/10.1016/j.dyepig.2020.108730.
dc.relationBenson, S.; de Moliner, F.; Tipping, W.; Vendrell, M. Miniaturized Chemical Tags for Optical Imaging. Angewandte Chemie - International Edition 2022, 202204788. https://doi.org/10.1002/anie.202204788.
dc.relationQuiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Synthesis of Novel 5-Amino-1-Aroylpyrazoles. Tetrahedron Lett 2008, 49 (41), 5943-5945. https://doi.org/10.1016/j.tetlet.2008.07.166.
dc.relationQuiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Synthesis of Novel 5-Amino-1-Aroylpyrazoles. Tetrahedron Lett 2008, 49 (41), 5943-5945. https://doi.org/10.1016/j.tetlet.2008.07.166.
dc.relationTigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain Chem Eng 2021. https://doi.org/10.1021/acssuschemeng.1c01689.
dc.relationCastillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571.
dc.relationSilveira, F.; Souza, J. O. De; Hoelz, L. V. B.; Campos, V. R.; Jabor, V. A. P.; Aguiar, A. C. C.; Nonato, M. C.; Albuquerque, M. G.; Guido, R. V. C.; Boechat, N.; Pinheiro, L. C. S. Comparative Study between the Anti- P . Falciparum Activity of Triazolopyrimidine , Pyrazolopyrimidine and Quinoline Derivatives and the Identi Fi Cation of New Pf DHODH Inhibitors Fl a. Eur J Med Chem 2021, 209. https://doi.org/10.1016/j.ejmech.2020.112941.
dc.relationMaros, H.; Juniar, S. ANEXO No. 04, SUBPARTIDAS QUE AMPARAN PRODUCTOS QUE ÚNICAMENTE PUEDEN SER IMPORTADOS A TRAVÉS DE LA INDUSTRIA MILITAR; 2016; pp 1-23.
dc.relationTaylor, P.; Silvonek, S. S.; Giller, C. B.; Abelt, C. J. ALTERNATE SYNTHESES OF PRODAN AND ACRYLODAN. Organic Preparations and Procedures International : The New Journal for Organic Synthesis 2014, 37 (6), 37-41. https://doi.org/10.1080/00304940509354992.
dc.relationWürth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-genger, U. Relative and Absolute Determination of Fluorescence Quantum Yields of Transparent Samples. Nat Protoc 2013, 8 (8), 1535-1550. https://doi.org/10.1038/nprot.2013.087.
dc.relationNiko, Y.; Kawauchi, S.; Konishi, G. I. Solvatochromic Pyrene Analogues of Prodan Exhibiting Extremely High Fluorescence Quantum Yields in Apolar and Polar Solvents. Chemistry - A European Journal 2013, 19 (30), 9760-9765. https://doi.org/10.1002/chem.201301020.
dc.relationRocha, O.; Schmitz, B. F.; Martins, M. A. P.; Zanatta, N.; Rosa, W. C.; Tisoco, I.; Iglesias, B. A.; Bonacorso, H. G. 4- ( Trifluoromethyl ) Coumarin-Fused Pyridines : Regioselective Synthesis and Photophysics , Electrochemical , and Antioxidative Activity. J Fluor Chem 2021, 248 (May). https://doi.org/10.1016/j.jfluchem.2021.109822.
dc.relationStefanello, F. S.; Kappenberg, Y. G.; Ketzer, A.; Franceschini, S. Z.; Salbego, P. R. S.; Acunha, T. V; Nogara, P. A.; Rocha, J. B. T.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Synthesis , QTAIM / MEP Analyses , and DNA / HSA-Binding Assays. J Mol Liq 2021, 324, 114729. https://doi.org/10.1016/j.molliq.2020.114729.
dc.relationOrrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. Journal of Organic Chemistry 2017, 82 (24), 13376-13385. https://doi.org/10.1021/acs.joc.7b02460.
dc.relationGonzález-Vera, J. A.; Lv, F.; Escudero, D.; Orte, A.; Guo, X.; Gonz, J. A.; Hao, E.; Talavera-rodriguez, E. M.; Jiao, L.; Ruedas-, M. J. Unusual Spectroscopic and Photophysical Properties of Solvatochromic BODIPY Analogues of Prodan. Dyes and Pigments 2020, 182 (February), 108510. https://doi.org/10.1016/j.dyepig.2020.108510.
dc.relationReichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 1994, 94, 2319-2358. https://doi.org/10.1021/cr00032a005.
dc.relationCatalan, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity ( SdP , a New Scale ), Polarizability ( SP ), Acidity ( SA ), and Basicity ( SB ) of the Medium. Journal of Physical Chemistry B 2009, 113, 5951-5960. https://doi.org/10.1021/jp8095727.
dc.relationEverett, R. K.; Nguyen, H. A. A.; Abelt, C. J. Does PRODAN Possess an O-TICT Excited State? Synthesis and Properties of Two Constrained Derivatives. Journal of Physical Chemistry A 2010, 114 (14), 4946-4950. https://doi.org/10.1021/jp1002808.
dc.relationOrtowski, R.; Banasiewicz, Marzena Guillaume, C.; Castet, F.; Nazir, R.; Blanchard-Desce, M.; Gryko, D. T. Strong Solvent Dependence of Linear and Non-Linear Optical Properties of Donor-Acceptor Type Pyrrolo[3,2-b]Pyrroles. Physical chemistry chemical physicshysical chemistry chemical physics 2015, 17 (37), 23724-23731. https://doi.org/10.1039/C5CP03523F.
dc.relationAllouche, A. Software News and Updates Gabedit - A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem 2012, 32 (Sfb 858), 174-182. https://doi.org/10.1002/jcc.
dc.relationTigreros, A.; Aranzazu, S.; Bravo, N.; Zapata-rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv 2020, 39542-39552. https://doi.org/10.1039/d0ra07716j.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleSíntesis y estudio fotofísico de análogos del Prodan con sistema [pi]-extendido de pirazolo[1,5-a]pirimidina
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución