dc.contributor | Portilla Salinas, Jaime Antonio | |
dc.contributor | Garay Talero, Alexander | |
dc.contributor | Rodríguez Angulo, Ricaurte | |
dc.contributor | Grupo de Investigación en Compuestos Bio-orgánicos | |
dc.creator | García Olave, Mayra Lizeth | |
dc.date.accessioned | 2023-01-11T19:59:33Z | |
dc.date.accessioned | 2023-09-07T02:32:49Z | |
dc.date.available | 2023-01-11T19:59:33Z | |
dc.date.available | 2023-09-07T02:32:49Z | |
dc.date.created | 2023-01-11T19:59:33Z | |
dc.date.issued | 2022-12-06 | |
dc.identifier | http://hdl.handle.net/1992/63710 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729464 | |
dc.description.abstract | En este trabajo de investigación se obtuvieron sondas fluorescentes basadas en el núcleo heterocíclico pi-extendido de pirazolo[1,5-a]pirimidina (PP) con potencial aplicación en el marcado de biomoléculas. Considerando las propiedades fotofísicas que han mostrado algunas pirazolo[1,5-a]pirimidinas (PPs), se sintetizaron nuevos derivados sustituidos en la posición 3 con un grupo electrón-aceptor (A) y en la posición 7 con un grupo electrón-dador (D). Estas posiciones son estratégicas para favorecer el fenómeno de transferencia de carga intramolecular (TCI) mediante la resonancia en los respectivos sistemas D-pi-A que poseen una estructura plana. De este modo, se esperaría observar un fenómeno de solvatofluorocromismo destacado mediante el estudió del comportamiento de los nuevos compuestos en disolventes de diferente polaridad y de sus propiedades espectroscópicas, absortividad molar, rendimiento cuántico, desplazamiento de Stokes, y fotoestabilidad, junto con la estabilidad térmica. Para establecer el alcance y proyección de esta investigación, los resultados obtenidos se compararon con los estándares Prodan y Rhodamina 6G. | |
dc.description.abstract | This research aimed to obtain fluorescent probes based on the [pi]-extended heterocyclic core of pyrazolo[1,5-a]pyrimidine (PP) with potential application in labeling biomolecules. Considering the photophysical properties that some pyrazolo[1,5-a]pyrimidines (PPs) have shown, it was sought to synthesize new derivatives substituted in position 3 with an electron-accepting group (A) and in position 7 with an electron-donor group (D). These positions are strategic to favor intramolecular charge transfer (ICT) phenomena through resonance in the respective D-[pi]-A systems with a planar structure. In this way, it would be expected to observe a unique solvatofluorochromism phenomenon by studying the behavior of the new compounds in solvents of different polarity and their spectroscopic properties -molar absorptivity, quantum yield, Stokes shift, photostability- together with thermal stability. The results obtained in this research were compared with those of standards such as Prodan and Rhodamine 6G to establish the scope and potential. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Química | |
dc.relation | Wang, A. C.; Zhang, R.; Sakaguchi, K.; Yu, X.; Elsegood, M. R. J.; Teat, S. J. Two-Photon Absorption Properties of Pyrene-Based Dipolar D-[pi]-A Fluorophores. ChemPhotoChem 2018, 2 (8), 749-756. https://doi.org/10.1002/cptc.201800053. | |
dc.relation | Zhang, B.; Zhao, P.; Wilson, L. J.; Subbiah, J.; Yang, H.; Mulvaney, P.; Jones, D. J.; Ghiggino, K. P.; Wong, W. W. H. High-Performance Large-Area Luminescence Solar Concentrator Incorporating a Donor - Emitter Fluorophore System. ACS Energy Lett 2019, 4 (8), 1839-1844. https://doi.org/10.1021/acsenergylett.9b01224. | |
dc.relation | Godugu, K.; Shaik, S.; Khaja, M.; Pinjari, M.; Sarma, S.; Divi, H.; Venkatramu, V.; Gangi, C.; Nallagondu, R. Solid State Thiazole-Based Fluorophores: Promising Materials for White Organic Light Emitting Devices. Dyes and Pigments 2021, 187 (July 2020), 109077. https://doi.org/10.1016/j.dyepig.2020.109077. | |
dc.relation | Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J. I. Fluorescent Probe for Detection of Fluoride in Water and Bioimaging in A549 Human Lung Carcinoma Cells. Chemical Communications 2009, No. 31, 4735-4737. https://doi.org/10.1039/b908745a. | |
dc.relation | Gao, L.; Wang, W.; Wang, X.; Yang, F.; Xie, L.; Shen, J.; Brimble, M. A.; Xiao, Q.; Yao, S. Q. Fluorescent Probes for Bioimaging of Potential Biomarkers in Parkinson's Disease. Chem Soc Rev 2021, 50 (2), 1219-1250. https://doi.org/10.1039/d0cs00115e. | |
dc.relation | Tigreros, A.; Portilla, J. Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Current Chinese Science 2021, 1 (2), 197-206. https://doi.org/10.2174/2210298101999201208211116. | |
dc.relation | Cecilia Barría. La Carrera Por Los Codiciados "Minerales Del Futuro" Que Pueden Crear Gigantescas Fortunas e Influir En La Seguridad Nacional de Los Países. BBC News Mundo. 2022. | |
dc.relation | Zhang, J.; Ning, L.; Liu, J.; Wang, J.; Yu, B.; Liu, X.; Yao, X.; Zhang, Z.; Zhang, H. Naked-Eye and Near-Infrared Fluorescence Probe for Hydrazine and Its Applications in In Vitro and in Vivo Bioimaging. Anal Chem 2015, 87 (17), 9101-9107. https://doi.org/10.1021/acs.analchem.5b02527. | |
dc.relation | Tung, C. H.; Han, M. S.; Shen, Z.; Gray, B. D.; Pak, K. Y.; Wang, J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021, 6 (10), 3657-3666. https://doi.org/10.1021/acssensors.1c01370. | |
dc.relation | Bosch, P.; Catalina, F.; Corrales, T.; Peinado, C. Fluorescent Probes for Sensing Processes in Polymers. Chemistry - A European Journal 2005, 11 (15), 4314-4325. https://doi.org/10.1002/chem.200401349. | |
dc.relation | Parisio, G.; Marini, A.; Biancardi, A.; Ferrarini, A.; Mennucci, B. Polarity-Sensitive Fluorescent Probes in Lipid Bilayers: Bridging Spectroscopic Behavior and Microenvironment Properties. Journal of Physical Chemistry B 2011, 115 (33), 9980-9989. https://doi.org/10.1021/jp205163w. | |
dc.relation | Yang, X.; Sun, R.; Guo, X.; Wei, X.; Gao, J.; Xu, Y.; Ge, J. The Application of Bioactive Pyrazolopyrimidine Unit for the Construction of Fl Uorescent Biomarkers. Dyes and Pigments 2020, 173 (September 2019), 107878. https://doi.org/10.1016/j.dyepig.2019.107878. | |
dc.relation | Tigreros, A.; Rosero, H. A.; Castillo, J. C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine-Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196 (November 2018), 395-401. https://doi.org/10.1016/j.talanta.2018.12.100. | |
dc.relation | Stefanello, F. S.; Kappenberg, Y. G.; Araújo, J. N.; Franceschini, S. Z.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Trifluoromethyl-Substituted Aryldiazenyl-Pyrazolo[1,5-a] Pyrimidin-2-Amines: Regioselective Synthesis, Structure, and Optical Properties. J Fluor Chem 2022, 255-256 (February), 109967. https://doi.org/10.1016/j.jfluchem.2022.109967. | |
dc.relation | Stefanello, F. S.; Vieira, J. C. B.; Ara, J. N.; Souza, B.; Frizzo, C. P.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Solution and Solid-State Optical Properties of Trifluoromethylated 5- ( Alkyl/Aryl/Heteroaryl)-2-Methyl-Pyrazolo [1,5-a]Pyrimidine System. Photochem 2022, 2, 345-357. https://doi.org/10.3390/photochem2020024. | |
dc.relation | Ortiz, M.-C.; Portilla, J. Access to Five-Membered N-Heteroaromatic Compounds: Current Approach Based on Microwave-Assisted Synthesis. Targets in Heterocyclic Systems 2021, 25, 436-462. https://doi.org/10.17374/targets.2022.25.436. | |
dc.relation | Ríos, M.-C.; Portilla, J. Recent Advances in Synthesis and Properties of Pyrazoles. Chemistry (Easton) 2022, 4 (3), 940-968. https://doi.org/10.3390/chemistry4030065. | |
dc.relation | Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional Pyrazolo[1,5-a]Pyrimidines: Current Approaches in Synthetic Transformations and Uses As an Antitumor Scaffold. Molecules 2021, 26 (9), 1-35. https://doi.org/10.3390/molecules26092708. | |
dc.relation | Lavis, L. D.; Raines, R. T. Bright Ideas for Chemical Biology. ACS Chem Biol 2008, 3 (3), 142-155. https://doi.org/10.1021/cb700248m. | |
dc.relation | Bernard Valeur. Encyclopedia of Applied Spectroscopy; 2009. | |
dc.relation | Paul, M. Branching Effect on the Linear and Nonlinear Optical Properties of Styrylpyrimidines. J Biomol Struct Dyn 2016, 22 (7), 1-27. https://doi.org/10.1080/07391102.2020.1758788. | |
dc.relation | Tigreros, A.; Ortiz, A.; Insuasty, B. Effect of p -Conjugated Linkage on Photophysical Properties : Acetylene Linker as the Better Connection Group for Highly Solvatochromic Probes. Dyes and Pigments 2014, 111, 45-51. https://doi.org/10.1016/j.dyepig.2014.05.035. | |
dc.relation | Marini, A.; Mun, A.; Biancardi, A.; Mennucci, B. What Is Solvatochromism? Journal of Physical Chemistry B 2010, 114, 17128-17135. https://doi.org/10.1021/jp1097487. | |
dc.relation | Kucherak, O. A.; Didier, P.; Yves, M.; Klymchenko, A. S. Fluorene Analogues of Prodan with Superior Fluorescence Brightness and Solvatochromism. Journal of Physical Chemistry Letters 2010, 1 (3), 616-620. https://doi.org/10.1021/jz9003685. | |
dc.relation | Gong, Y.; Guo, X.; Wang, S.; Su, H.; Xia, A.; He, Q.; Bai, F. Photophysical Properties of Photoactive Molecules with Conjugated Push-Pull Structures. Journal of Physical Chemistry A 2007, 111 (26), 5806-5812. https://doi.org/10.1021/jp0705323. | |
dc.relation | Castanheira, S.; Martinho, G. Solvatochromic Shifts of Naphthalene and Pyrene Excimers. J Photochem Photobiol A Chem 1994, 80, 151-156. https://doi.org/10.1016/1010-6030(93)01011-P. | |
dc.relation | Mittal, M.; Vol, E.; Press, P.; York, N.; Acta, S. B. B.; Press, P.; Weber, G.; Farris, F. J. Synthesis and Spectral Properties of a Hydrophobic Fluorescent Probe: 6-Propionyl-2- ( Dimet Hy1amino ) Napht Halenet. Biochemistry 1979, 18 (14), 3075-3078. https://doi.org/10.1021/bi00581a025. | |
dc.relation | Hagimori, M.; Karimine, Y.; Mizuyama, N.; Hara, F.; Fujino, T.; Saji, H.; Mukai, T. Selective Cadmium Fluorescence Probe Based on Bis-Heterocyclic Molecule and Its Imaging in Cells. J Fluoresc 2021, 31 (4), 1161-1167. https://doi.org/10.1007/s10895-021-02748-7. | |
dc.relation | Wei, Y. F.; Zhang, X. Q.; Sun, R.; Xu, Y. J.; Ge, J. F. Fluorescent Probes Based 1,8-Naphthalimide-Nitrogen Heterocyclic for Monitoring the Fluctuation of Mitochondrial Viscosity. Dyes and Pigments 2021, 194 (June), 109559. https://doi.org/10.1016/j.dyepig.2021.109559. | |
dc.relation | Jiang, X.; Shangguan, M.; Lu, Z.; Yi, S.; Zeng, X.; Zhang, Y.; Hou, L. A "Turn-on" Fluorescent Probe Based on V-Shaped Bis-Coumarin for Detection of Hydrazine. Tetrahedron 2020, 76 (7), 130921. https://doi.org/10.1016/j.tet.2020.130921. | |
dc.relation | Ríos; M.-C.; Bravo; N.-F.; Sánchez; C.-C.; Portilla; J. Chemosensors Based on N-Heterocyclic Dyes: Advances in Sensing Highly Toxic Ions Such as CN À. RSC Adv 2021, 11, 34206-34234. https://doi.org/10.1039/d1ra06567j. | |
dc.relation | Castillo, J.; Rosero, H.-A.; Portilla, J. Simple Access toward 3-Halo- and 3-Nitro-Pyrazolo [1,5-a]Pyrimidines through a One-Pot Sequence. RSC Adv 2017, 7 (45), 28483-28488. https://doi.org/10.1039/c7ra04336h. | |
dc.relation | Zhang, Y. C.; Zhang, B. W.; Geng, R. L.; Song, J. Enantioselective [3 + 2] Cycloaddition Reaction of Ethynylethylene Carbonates with Malononitrile Enabled by Organo/Metal Cooperative Catalysis. Org Lett 2018, 20 (24), 7907-7911. https://doi.org/10.1021/acs.orglett.8b03454. | |
dc.relation | Castillo, J.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J Org Chem 2018, 83, 10887-10897. https://doi.org/10.1021/acs.joc.8b01571. | |
dc.relation | Aranzazu, S.; Tigreros, A.; Arias-g, A.; Zapata-rivera, J.; Portilla, J. BF3 Mediated Acetylation of Pyrazolo[1,5 a]Pyrimidines and Other - Excedent (N Hetero)Arenes. J Org Chem 2022, 87 (15), 9839-9850. https://doi.org/10.1021/acs.joc.2c00881. | |
dc.relation | Bedford, R. B.; Durrant, S. J.; Montgomery, M. Catalyst-Switchable Regiocontrol in the Direct Arylation of Remote C-H Groups in Pyrazolo[1,5-a]Pyrimidines. Angewandte Chemie - International Edition 2015, 54 (30), 8787-8790. https://doi.org/10.1002/anie.201502150. | |
dc.relation | Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Regioselective Formylation of Pyrazolo[3,4-b]Pyridine and Pyrazolo[1,5-a]Pyrimidine Systems Using Vilsmeier-Haack Conditions. Tetrahedron Lett 2008, 49 (17), 2689-2691. https://doi.org/10.1016/j.tetlet.2008.02.166. | |
dc.relation | Yoshida, M.; Mori, A.; Inaba, A.; Oka, M.; Makino, H.; Yamaguchi, M.; Fujita, H.; Kawamoto, T.; Goto, M.; Kimura, H.; Baba, A.; Yasuma, T. Synthesis and Structure-Activity Relationship of Tetrahydropyrazolopyrimidine Derivatives - A Novel Structural Class of Potent Calcium-Sensing Receptor Antagonists. Bioorg Med Chem 2010, 18 (24), 8501-8511. https://doi.org/10.1016/j.bmc.2010.10.035. | |
dc.relation | Soares, C.; Melo, D.; Feng, T.; Westhuyzen, R. Van Der; Gessner, R. K.; Street, L. J.; Morgans, G. L.; Warner, D. F.; Moosa, A.; Naran, K.; Lawrence, N.; Boshoff, H. I. M.; Barry, C. E.; Harris, C. J.; Gordon, R.; Chibale, K. Bioorganic & Medicinal Chemistry Aminopyrazolo [ 1 , 5- a ] Pyrimidines as Potential Inhibitors of Mycobacterium Tuberculosis : Structure Activity Relationships and ADME Characterization. Bioorg Med Chem 2015, 23 (22), 7240-7250. https://doi.org/10.1016/j.bmc.2015.10.021. | |
dc.relation | Felipe, L.; Azeredo, S. P.; Coutinho, J. P.; Jabor, V. A. P.; Feliciano, P. R.; Cristina, M.; Kaiser, C. R.; Maria, C.; Menezes, S.; Hammes, A. S. O.; Raul, E.; Hoelz, L. V. B.; Souza, N. B. De. Plasmodium Falciparum , Antimalarial , and Pf- Dihydroorotate Dehydrogenase Inhibitors. Eur J Med Chem 2017, 126, 72-83. https://doi.org/10.1016/j.ejmech.2016.09.073. | |
dc.relation | Abe, M.; Seto, M.; Gogliotti, R. G.; Loch, M. T.; Bollinger, K. A.; Chang, S.; Engelberg, E. M.; Luscombe, V. B.; Harp, J. M.; Bubser, M.; Engers, D. W.; Jones, C. K.; Rodriguez, A. L.; Blobaum, A. L.; Conn, P. J.; Niswender, C. M.; Lindsley, C. W. Discovery of VU6005649, a CNS Penetrant MGlu7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5-a]Pyrimidines. ACS Med Chem Lett 2017, 8 (10), 1110-1115. https://doi.org/10.1021/acsmedchemlett.7b00317. | |
dc.relation | Portilla, J.; Quiroga, J.; Cobo, J.; Low, J. N.; Glidewell, C. 7-Amino-2,5-Dimethylpyrazolo[1,5-a]-Pyrimidine Hemihydrate Redetermined at 120 K: A Three-Dimensional Hydrogen-Bonded Framework. Acta Crystallogr C 2006, 62 (4). https://doi.org/10.1107/S0108270106005373. | |
dc.relation | Tigreros, A.; Castillo, J.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo [ 1 , 5- a ] Pyrimidines : Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215 (January), 120905. https://doi.org/10.1016/j.talanta.2020.120905. | |
dc.relation | Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine-Triphenylamine Systems. Dyes and Pigments 2021, 184 (June 2020). https://doi.org/10.1016/j.dyepig.2020.108730. | |
dc.relation | Benson, S.; de Moliner, F.; Tipping, W.; Vendrell, M. Miniaturized Chemical Tags for Optical Imaging. Angewandte Chemie - International Edition 2022, 202204788. https://doi.org/10.1002/anie.202204788. | |
dc.relation | Quiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Synthesis of Novel 5-Amino-1-Aroylpyrazoles. Tetrahedron Lett 2008, 49 (41), 5943-5945. https://doi.org/10.1016/j.tetlet.2008.07.166. | |
dc.relation | Quiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Synthesis of Novel 5-Amino-1-Aroylpyrazoles. Tetrahedron Lett 2008, 49 (41), 5943-5945. https://doi.org/10.1016/j.tetlet.2008.07.166. | |
dc.relation | Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5- a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain Chem Eng 2021. https://doi.org/10.1021/acssuschemeng.1c01689. | |
dc.relation | Castillo, J. C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry 2018, 83 (18), 10887-10897. https://doi.org/10.1021/acs.joc.8b01571. | |
dc.relation | Silveira, F.; Souza, J. O. De; Hoelz, L. V. B.; Campos, V. R.; Jabor, V. A. P.; Aguiar, A. C. C.; Nonato, M. C.; Albuquerque, M. G.; Guido, R. V. C.; Boechat, N.; Pinheiro, L. C. S. Comparative Study between the Anti- P . Falciparum Activity of Triazolopyrimidine , Pyrazolopyrimidine and Quinoline Derivatives and the Identi Fi Cation of New Pf DHODH Inhibitors Fl a. Eur J Med Chem 2021, 209. https://doi.org/10.1016/j.ejmech.2020.112941. | |
dc.relation | Maros, H.; Juniar, S. ANEXO No. 04, SUBPARTIDAS QUE AMPARAN PRODUCTOS QUE ÚNICAMENTE PUEDEN SER IMPORTADOS A TRAVÉS DE LA INDUSTRIA MILITAR; 2016; pp 1-23. | |
dc.relation | Taylor, P.; Silvonek, S. S.; Giller, C. B.; Abelt, C. J. ALTERNATE SYNTHESES OF PRODAN AND ACRYLODAN. Organic Preparations and Procedures International : The New Journal for Organic Synthesis 2014, 37 (6), 37-41. https://doi.org/10.1080/00304940509354992. | |
dc.relation | Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-genger, U. Relative and Absolute Determination of Fluorescence Quantum Yields of Transparent Samples. Nat Protoc 2013, 8 (8), 1535-1550. https://doi.org/10.1038/nprot.2013.087. | |
dc.relation | Niko, Y.; Kawauchi, S.; Konishi, G. I. Solvatochromic Pyrene Analogues of Prodan Exhibiting Extremely High Fluorescence Quantum Yields in Apolar and Polar Solvents. Chemistry - A European Journal 2013, 19 (30), 9760-9765. https://doi.org/10.1002/chem.201301020. | |
dc.relation | Rocha, O.; Schmitz, B. F.; Martins, M. A. P.; Zanatta, N.; Rosa, W. C.; Tisoco, I.; Iglesias, B. A.; Bonacorso, H. G. 4- ( Trifluoromethyl ) Coumarin-Fused Pyridines : Regioselective Synthesis and Photophysics , Electrochemical , and Antioxidative Activity. J Fluor Chem 2021, 248 (May). https://doi.org/10.1016/j.jfluchem.2021.109822. | |
dc.relation | Stefanello, F. S.; Kappenberg, Y. G.; Ketzer, A.; Franceschini, S. Z.; Salbego, P. R. S.; Acunha, T. V; Nogara, P. A.; Rocha, J. B. T.; Martins, M. A. P.; Zanatta, N.; Iglesias, B. A.; Bonacorso, H. G. Synthesis , QTAIM / MEP Analyses , and DNA / HSA-Binding Assays. J Mol Liq 2021, 324, 114729. https://doi.org/10.1016/j.molliq.2020.114729. | |
dc.relation | Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)Pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. Journal of Organic Chemistry 2017, 82 (24), 13376-13385. https://doi.org/10.1021/acs.joc.7b02460. | |
dc.relation | González-Vera, J. A.; Lv, F.; Escudero, D.; Orte, A.; Guo, X.; Gonz, J. A.; Hao, E.; Talavera-rodriguez, E. M.; Jiao, L.; Ruedas-, M. J. Unusual Spectroscopic and Photophysical Properties of Solvatochromic BODIPY Analogues of Prodan. Dyes and Pigments 2020, 182 (February), 108510. https://doi.org/10.1016/j.dyepig.2020.108510. | |
dc.relation | Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem Rev 1994, 94, 2319-2358. https://doi.org/10.1021/cr00032a005. | |
dc.relation | Catalan, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity ( SdP , a New Scale ), Polarizability ( SP ), Acidity ( SA ), and Basicity ( SB ) of the Medium. Journal of Physical Chemistry B 2009, 113, 5951-5960. https://doi.org/10.1021/jp8095727. | |
dc.relation | Everett, R. K.; Nguyen, H. A. A.; Abelt, C. J. Does PRODAN Possess an O-TICT Excited State? Synthesis and Properties of Two Constrained Derivatives. Journal of Physical Chemistry A 2010, 114 (14), 4946-4950. https://doi.org/10.1021/jp1002808. | |
dc.relation | Ortowski, R.; Banasiewicz, Marzena Guillaume, C.; Castet, F.; Nazir, R.; Blanchard-Desce, M.; Gryko, D. T. Strong Solvent Dependence of Linear and Non-Linear Optical Properties of Donor-Acceptor Type Pyrrolo[3,2-b]Pyrroles. Physical chemistry chemical physicshysical chemistry chemical physics 2015, 17 (37), 23724-23731. https://doi.org/10.1039/C5CP03523F. | |
dc.relation | Allouche, A. Software News and Updates Gabedit - A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem 2012, 32 (Sfb 858), 174-182. https://doi.org/10.1002/jcc. | |
dc.relation | Tigreros, A.; Aranzazu, S.; Bravo, N.; Zapata-rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidines-Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv 2020, 39542-39552. https://doi.org/10.1039/d0ra07716j. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Síntesis y estudio fotofísico de análogos del Prodan con sistema [pi]-extendido de pirazolo[1,5-a]pirimidina | |
dc.type | Trabajo de grado - Maestría | |