dc.contributor | Rodríguez Herrera, Carlos Francisco | |
dc.contributor | Gómez Castro, Camilo Hernando | |
dc.contributor | Gómez Castro, Camilo Hernando | |
dc.contributor | Álvarez Martínez, David | |
dc.contributor | Lozano, Carlos | |
dc.creator | Pardo González, Germán Roberto | |
dc.date.accessioned | 2023-06-16T19:54:04Z | |
dc.date.accessioned | 2023-09-07T02:32:08Z | |
dc.date.available | 2023-06-16T19:54:04Z | |
dc.date.available | 2023-09-07T02:32:08Z | |
dc.date.created | 2023-06-16T19:54:04Z | |
dc.date.issued | 2023-06-16 | |
dc.identifier | http://hdl.handle.net/1992/67649 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729444 | |
dc.description.abstract | The development of autonomous systems, such as Unmanned Aerial Vehicles (UAVs), has witnessed significant growth in recent years. Their deployment in emergency response missions has become increasingly crucial due to their potential benefits, such as faster response times. However, these benefits also raise ethical considerations that must be addressed when utilizing them in emergency scenarios.
This work aims to contribute to the fair automation of UAVs in disaster response missions. To achieve this, the Column Generation method is employed to solve the initial routing problem within a specific grid. The primary objectives of this approach are twofold: to maximise population coverage and maximise fairness in the distribution of coverage, with a focus on assisting the most vulnerable individuals. Since the data accounts for two conflicting objectives, only Pareto-optimal solutions are considered and compared based on the assigned weights for each objective. Moreover, the Q-Learning algorithm is utilised to dynamically evaluate and prioritise newly discovered survivors who were not initially expected. This algorithm enables the agent to adapt and make decisions based on the vulnerability of the survivors. In order to address uncertainties inherent in emergency situations, a random variable is incorporated, enabling the agent to learn and make decisions based on new information. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Ingeniería Mecánica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Mecánica | |
dc.relation | Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 270-299. doi:https://doi.org/10.1016/j.comcom.2019.10.014 | |
dc.relation | Anastasiou, A., Kolios, P., Panayiotou, C., & Papadaki, K. (2020). Swarm Path Planning for the Deployment of Drones in Emergency Response Missions. 2020 International Conference on Unmanned Aircraft Systems (ICUAS), (pp. 456-465). Athens. doi:10.1109/ICUAS48674.2020.9213876 | |
dc.relation | Arnold, R. D., Yamaguchi, H., & Tanaka, T. (2018). Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. Journal of International Humanitarian Action, 3-18. doi:https://doi.org/10.1186/s41018-018-0045-4 | |
dc.relation | Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., . . . Rahwan, I. (2018). The Moral Machine experiment. Nature, 59-64. doi:https://doi.org/10.1038/s41586-018-0637-6 | |
dc.relation | Battistuzzi, L., Recchiuto, C. T., & Sgorbissa, A. (2021). Ethical concerns in rescue robotics: a scoping review. Ethics and Information Technology, 863-875. doi:https://doi.org/10.1007/s10676-021-09603-0 | |
dc.relation | Brandao, M., Jirotka, M., Webb, H., & Luff, P. (2020). Fair navigation planning: A resource for characterizing and designing fairness in mobile robots. Artificial Intelligence. doi:https://doi.org/10.1016/j.artint.2020.103259 | |
dc.relation | Ebina, T., & Kinjo, K. (2021). Approaching the social dilemma of autonomous vehicles with a general social welfare function. Engineering Applications of Artificial Intelligence. doi:https://doi.org/10.1016/j.engappai.2021.104390 | |
dc.relation | Etzioni, A., & Etzioni, O. (2017). Incorporating Ethics into Artificial Intelligence. The Journal of Ethics, 403-418. doi:DOI 10.1007/s10892-017-9252-2 | |
dc.relation | Evans, K., de Moura, N., Chauvier, S., Chatila, R., & Dogan, E. (2020). Ethical Decision Making in Autonomous Vehicles: The AV Ethics project. Science and Engineering Ethics, 3285-3312. doi:https://doi.org/10.1007/s11948-020-00272-8 | |
dc.relation | Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems. A Quarterly Journal of Operations Research, 407-424. doi:https://doi.org/10.1007/s10288-010-0130-z | |
dc.relation | Geisslinger, M., Poszler, F., & Lienkamp, M. (2023). An Ethical Trajectory Planning Algorithm for Autonomous Vehicles. Nature Machie Intelligence, 137-144. doi:https://doi.org/10.1038/s42256-022-00607-z | |
dc.relation | Hussain, Q., Feng, H., Grzebieta, R., Brijs, T., & Olivier, J. (2019). The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accident Analysis and Prevention, 241-249. doi:https://doi.org/10.1016/j.aap.2019.05.033 | |
dc.relation | Lozano, L., Duque, D., & Medaglia, A. L. (2016). An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints. Transportation Science, 348-357. doi:http://dx.doi.org/10.1287/trsc.2014.0582 | |
dc.relation | Mavrotas, G. (2009). Effective implementation of the e-constraint method in Multi-Objective Mathematical Programming problems. Applied Mathematics and Computation, 455-465. | |
dc.relation | Nie, J., Li, G., & Yang, J. (2015). A Study of Fatality Risk and Head Dynamic Response of Cyclist and Pedestrian Based on Passenger Car Accident Data Analysis and Simulations. Traffic Injury Prevention, 76-83. doi:10.1080/15389588.2014.881477 | |
dc.relation | Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 795-821. doi:https://doi.org/10.1016/j.ejor.2018.07.014 | |
dc.relation | Powell, W. B. (2022). Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions. John Wiley & Sons. | |
dc.relation | Saha, S., Vasegaard Elkjaer, A., Nielsen, I., Hapka, A., & Budzisz, H. (2021). UAVs Path Planning under a Bi-Objective Optimization Framework for Smart Cities. Electronics. doi:https://doi.org/10.3390/electronics10101193 | |
dc.relation | Sutton, R., & Barto, A. (2015). Reinforcement Learning: An Introduction. The MIT Press. | |
dc.relation | Weidinger, L., Mckee, K. R., Everett, R., Huang, S., Zhu, T. O., Chadwick, M. J., . . . Gabriel, I. (2023). Using the Veil of Ignorance to align AI systems with principles of justice. doi:https://doi.org/10.1073/pnas.2213709120 | |
dc.rights | Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Fair path planning for Unmanned Aerial Vehicles (UAVs) in emergency response missions | |
dc.type | Trabajo de grado - Pregrado | |