dc.contributorSierra Ramírez, Rocío
dc.contributorDurán Aranguren, Daniel David
dc.contributorFelipe, Maria das Graças de Almeida
dc.contributorCabrera Camacho, Camilo Ernesto
dc.contributorSánchez Camargo, Andrea del Pilar
dc.creatorCajiao Pedraza, María Fernanda
dc.date.accessioned2023-07-10T18:51:32Z
dc.date.accessioned2023-09-07T02:30:49Z
dc.date.available2023-07-10T18:51:32Z
dc.date.available2023-09-07T02:30:49Z
dc.date.created2023-07-10T18:51:32Z
dc.date.issued2023-07-04
dc.identifierhttp://hdl.handle.net/1992/68270
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729418
dc.description.abstractSince 1970, xylitol has been used in foods, pharmaceuticals, and health products such as gum, dental paste, and toothpaste. At the industrial level, xylitol is produced by chemical processes (catalytic xylose hydrogenation), as the biotechnological route that has been widely studied in the last decade currently has bottlenecks such as energy consumption in some stages of the process (Morakile et al., 2022). However, it is still necessary to carry out techno-economic analyses of the conceptual process to identify areas for improvement. The present study evaluates the operational process production of xylitol by the biotechnological route using bagasse and sugarcane straw as the raw materials for the process. This process is studied using acid hydrolysis to produce xylose which subsequently undergoes a fermentation process to obtain xylitol. In Chapter 1, the biotechnological process for xylitol production was studied with variations in the operating conditions of one of the costliest stages of the process, with the objective of obtaining higher yields of xylose. Fermentation of the hydrolyzate obtained was performed and compared with synthetic medium fermentations supplied with different nitrogen sources. Likewise, the design of the process focused on the treatment of the hydrolysis product was studied, which has shown to be important in the final productivity and in the projection of scaling up to industrial level. In Chapter 2, the results of the operating conditions and information in the literature were used to design the conceptual process and build a first model that describes the relationship between raw material input and xylitol production. Also, the financial feasibility of scaling up the process in the Colombian context was analysed.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationAguiar, A., Milessi, T. S., Mulinari, D. R., Lopes, M. S., da Costa, S. M., & Candido, R. G. (2021). Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass and Bioenergy, 144, 105896. https://doi.org/10.1016/J.BIOMBIOE.2020.105896
dc.relationAhmad, N., & Zakaria, M. R. (2019). Oligosaccharide from hemicellulose. Lignocellulose for Future Bioeconomy, 135-152. https://doi.org/10.1016/B978-0-12-816354-2.00008-6
dc.relationAjala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing, 8(1). https://doi.org/10.1186/s40643-021-00440-z
dc.relationAlbuquerque, T. L. De, Da Silva, I. J., De MacEdo, G. R., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: A review. Process Biochemistry, 49(11), 1779-1789. https://doi.org/10.1016/J.PROCBIO.2014.07.010
dc.relationAlokika, Anu, Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564-582. https://doi.org/10.1016/J.IJBIOMAC.2020.12.175
dc.relationAnukam, A., Mamphweli, S., Reddy, P., Meyer, E., & Okoh, O. (2016). Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 775-801. https://doi.org/10.1016/J.RSER.2016.08.046
dc.relationAnwar, Z., Gulfraz, M., & Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173. https://doi.org/10.1016/j.jrras.2014.02.003
dc.relationArminda, M., Josúe, C., Cristina, D., Fabiana, S., & Yolanda, M. (2021). Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation. Journal of Environmental Management, 296, 113320. https://doi.org/10.1016/J.JENVMAN.2021.113320
dc.relationBevilaqua, G. C., Maugeri Filho, F., & Forte, M. B. S. (2023). Simultaneous production of xylitol and arabitol by Candida tropicalis fermentation improving agro-industrial wastes valorization. Food and Bioproducts Processing, 140, 29-45. https://doi.org/10.1016/j.fbp.2023.04.006
dc.relationBonfiglio, F., Cagno, M., Yamakawa, C. K., & Mussatto, S. I. (2021). Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Industrial Crops and Products, 170(April), 113800. https://doi.org/10.1016/j.indcrop.2021.113800
dc.relationCandido, J. P., Claro, E. M. T., de Paula, C. B. C., Shimizu, F. L., de Oliveria Leite, D. A. N., Brienzo, M., & de Angelis, D. de F. (2020). Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World Journal of Microbiology and Biotechnology, 36(3), 1-12. https://doi.org/10.1007/s11274-020-02820-7
dc.relationCanettieri, E. V., da Silva, V. P., Neto, T. G. S., Hernández-Pérez, A. F., da Silva, D. D. V., Dussán, K. J., das Graças Almeida Felipe, M., & de Carvalho, J. A. (2018). Physicochemical and thermal characteristics of sugarcane straw and its cellulignin. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(9), 1-13. https://doi.org/10.1007/s40430-018- 351331-1
dc.relationCanilha, L., Carvalho, W., De Almeida Felipe, M. D. G., De Almeida E Silva, J. B., & Giulietti, M. (2010). Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Applied Biochemistry and Biotechnology, 161(1-8), 84-92. https://doi.org/10.1007/s12010-009-8792- 8
dc.relationCarneiro, C. V. G. C., E Silva, F. C. de P., & Almeida, J. R. M. (2019). Xylitol production: Identification and comparison of new producing yeasts. Microorganisms, 7(11). https://doi.org/10.3390/microorganisms7110484
dc.relationChandel, A. K., Antunes, F. A. F., Anjos, V., Bell, M. J. V., Rodrigues, L. N., Polikarpov, I., De Azevedo, E. R., Bernardinelli, O. D., Rosa, C. A., Pagnocca, F. C., & Da Silva, S. S. (2014). Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid-base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 7(1), 1-17. https://doi.org/10.1186/1754-6834-7-63
dc.relationChaves, S. R., Rego, A., Martins, V. M., Santos-Pereira, C., Sousa, M. J., & Côrte-Real, M. (2021). Regulation of cell death induced by acetic acid in yeasts. Frontiers in Cell and Developmental Biology, 9(June). https://doi.org/10.3389/fcell.2021.642375
dc.relationCuadrado-Osorio, P. D., Ramírez-Mejía, J. M., Mejía-Avellaneda, L. F., Mesa, L., & Bautista, E. J. (2022). Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. Bioresource Technology Reports, 20(September), 101232. https://doi.org/10.1016/j.biteb.2022.101232
dc.relationDanielle, D., Cândido, E. D. J., Arruda, P. V. De, Silvério, S., & Almeida, G. De. (2014). New cultive medium for bioconversion of C5 fraction from sugarcane bagasse using rice bran extract. 1475, 1469-1475.
dc.relationDasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research, 197, 9-21. https://doi.org/10.1016/j.micres.2016.12.012
dc.relationde Almeida, S. G. C., Silva, V. T. F., de Souza, J. P., Prado, C. D., Oliveira, D. K. S., Silva, D. D. V., & Dussán, K. J. (2022). Methods for Hemicellulose Deconstruction Aiming to Xylose Recovery: Recent Progress and Future Perspectives. Current Advances in Biotechnological Production of Xylitol, 1-31. https://doi.org/10.1007/978-3-031-04942-2_1
dc.relationde Arruda, P. V., de Cássia Lacerda Brambilla Rodrigu, R., da Silva, D. D. V., & de Almeida Felipe, M. das G. (2011). Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation, 22(4), 815-822. https://doi.org/10.1007/s10532-010-9397-1
dc.relationDe Souza Queiroz, S., Jofre, F. M., Bianchini, I. A. de, Bordini, F. W., da Boaes, T. S., Chandel, A. K., & de Almeida Felipe, M. das G. (2022). Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates. In Current Advances in Biotechnological Production of Xylitol (pp. 51-66).
dc.relationDurán-Aranguren, D. D., Cajiao-Pedraza, M. F., Ospina-Paz, J. A., Vásquez-Muñoz, J. D., Hernández-Perez, A. F., & Sierra, R. (2022). Critical Analysis on Xylitol Production Employing Integrated Approaches in Sugarcane and Corn Processing Mills. Current Advances in Biotechnological Production of Xylitol, 137-162. https://doi.org/10.1007/978-3-031-04942- 2_7
dc.relationFor, O., Of, O., & To, E. (2013). PROCESS CONCEPTS FOR CONVERSION OF BIOFUELS RESIDUE TO VALUE ADDED PRODUCT A thesis submitted to The University of Manchester for the degree of Master of Philosophy ( MPhil ) of Chemical Engineering in the Faculty of Engineering and Physical Science.
dc.relationGalbe, M., Wallberg, O., & Zacchi, G. (2011). Techno-Economic Aspects of Ethanol Production from Lignocellulosic Agricultural Crops and Residues. In Comprehensive Biotechnology (Second Edi, Vol. 1). Elsevier B.V. https://doi.org/10.1016/B978-0-08-088504-9.00298-1
dc.relationHames, B. R. (2009). Biomass Compositional Analysis for Energy Applications. In J. R. Mielenz (Ed.), Biofuels. Methods in Molecular Biology, vol 581 (pp. 145-167). Humana Press, Totowa, NJ. https://doi.org/https://doi-org.ezproxy.uniandes.edu.co/10.1007/978-1-60761-214-8_11
dc.relationHames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., & Templeton, D. (2008). Preparation of Samples for Compositional Analysis-NREL/TP-510-42620. Laboratory Analytical Procedure (LAP), June 2008.
dc.relationHashem, A., Aniagor, C. O., Taha, G. M., & Fikry, M. (2021). Utilization of low-cost sugarcane waste for the adsorption of aqueous Pb(II): Kinetics and isotherm studies. Current Research in Green and Sustainable Chemistry, 4(November 2020), 100056. https://doi.org/10.1016/j.crgsc.2021.100056
dc.relationHaven, M. Ø., & Jørgensen, H. (2014). The Challenging Measurement of Protein in Complex Biomass-Derived Samples. Applied Biochemistry and Biotechnology, 172(1), 87-101. https://doi.org/10.1007/s12010-013-0466-x
dc.relationHernández-pérez, A. F., Arruda, P. V. De, & Grac, M. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. 7, 489-496. https://doi.org/10.1016/j.bjm.2016.01.019
dc.relationHernández-Pérez, A. F., Costa, I. A. L., Silva, D. D. V., Dussán, K. J., Villela, T. R., Canettieri, E. V., Carvalho, J. A., Soares Neto, T. G., & Felipe, M. G. A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technology, 200, 1085-1088. https://doi.org/10.1016/J.BIORTECH.2015.11.036
dc.relationHernández-Pérez, Andrés Felipe, de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., & de Almeida Felipe, M. das G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943. https://doi.org/10.1080/07388551.2019.1640658
dc.relationHou-Rui, Z., Xiang-Xiang, Q., Silva, S. S., Sarrouh, B. F., Ai-Hua, C., Yu-Heng, Z., Ke, J., & Qiu, X. (2009). Novel isolates for biological detoxification of lignocellulosic hydrolysate. Applied Biochemistry and Biotechnology, 152(2), 199-212. https://doi.org/10.1007/s12010-008-8249-5
dc.relationHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., & Dudgeon, D. (2011). Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. https://doi.org/10.2172/1013269
dc.relationJain, V., & Ghosh, S. (2021). Biotransformation of lignocellulosic biomass to xylitol: an overview. Biomass Conversion and Biorefinery, 0123456789. https://doi.org/10.1007/s13399-021-01904-0
dc.relationJain, V., & Ghosh, S. (2023). Xylitol biosynthesis enhancement by Candida tropicalis via medium , process parameter optimization , and co-substrate supplementation. Preparative Biochemistry & Biotechnology, 0(0), 1-11. https://doi.org/10.1080/10826068.2023.2209897
dc.relationJofre, F. M., Hernández-Pérez, A. F., Santos, J. C. dos, & Felipe, M. das G. de A. (2021). Use of dry yeast biomass as a new approach for detoxification of hemicellulosic hydrolysates aiming to xylitol production. Industrial Crops and Products, 170, 113812. https://doi.org/10.1016/J.INDCROP.2021.113812
dc.relationJuela, D., Vera, M., Cruzat, C., Alvarez, X., & Vanegas, E. (2021). Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00102-x
dc.relationKanwal, S., Chaudhry, N., Munir, S., & Sana, H. (2019). Effect of torrefaction conditions on the physicochemical characterization of agricultural waste ( sugarcane bagasse ). Waste Management, 88, 280-290. https://doi.org/10.1016/j.wasman.2019.03.053
dc.relationKuchelmeister, C., & Bauer, S. (2015). Rapid Small-Scale Determination of Extractives in Biomass. Bioenergy Research, 8(July 2014), 68-76. https://doi.org/10.1007/s12155-014-9493-x
dc.relationKwak, S., Jo, J. H., Yun, E. J., Jin, Y. S., & Seo, J. H. (2019). Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 37(2), 271-283. https://doi.org/10.1016/j.biotechadv.2018.12.003
dc.relationLima, L. H. A., De Almeida Felipe, M. D. G., Vitolo, M., & Torres, F. A. G. (2004). Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Applied Microbiology and Biotechnology, 65(6), 734-738. https://doi.org/10.1007/s00253-004-1612-8
dc.relationMesa-pérez, J. M., Dilcio, J., Barbosa-cortez, L. A., Penedo-medina, M., Alberto, C., & Cascarosa, E. (2013). Fast oxidative pyrolysis of sugar cane straw in a fl uidized bed reactor. Applied Thermal Engineering, 56(1-2), 167-175. https://doi.org/10.1016/j.applthermaleng.2013.03.017
dc.relationMorais Junior, W. G., Pacheco, T. F., Trichez, D., Almeida, J. R. M., & Gonçalves, S. B. (2019). Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349-361. https://doi.org/10.1002/yea.3394
dc.relationMorakile, T., Mandegari, M., Farzad, S., & Görgens, J. F. (2022). Comparative techno-economic assessment of sugarcane biorefineries producing glutamic acid, levulinic acid and xylitol from sugarcane. Industrial Crops and Products, 184(May). https://doi.org/10.1016/j.indcrop.2022.115053
dc.relationNeves, P. V, Pitarelo, A. P., & Ramos, L. P. (2016). Production of cellulosic ethanol from sugarcane bagasse by steam explosion: Effect of extractives content , acid catalysis and different fermentation technologies. BIORESOURCE TECHNOLOGY, 208, 184-194. https://doi.org/10.1016/j.biortech.2016.02.085
dc.relationPhilippini, R. R., Martiniano, S. E., Chandel, A. K., de Carvalho, W., & da Silva, S. S. (2017). Pretreatment of Sugarcane Bagasse from Cane Hybrids: Effects on Chemical Composition and 2G Sugars Recovery. Waste and Biomass Valorization, 10(6), 1561-1570. https://doi.org/10.1007/s12649-017-0162-0
dc.relationPing, Y., Ling, H. Z., Song, G., & Ge, J. P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86-91. https://doi.org/10.1016/J.BEJ.2013.03.022
dc.relationPrado, Carina A., P., Antunes, F. A. F., Terán-Hilares, R., Díaz-Ruiz, E., Jofre, F. M., Arruda, G. L., Cruz-Santos, M. M., Melo, Y. C. S., & Santos, J. C. (2022). An Overview of Different Approaches and Bioreactors for Xylitol Production by Fermentation. In Current Advances in Biotechnological Production of Xylitol. https://doi.org/10.1007/978-3-031-04942-2
dc.relationRaj, T., Kapoor, M., Gaur, R., Christopher, J., Lamba, B., Tuli, D. K., & Kumar, R. (2015). Physical and Chemical Characterization of Various Indian Agriculture Residues for Biofuels Production. Energy Fuels, 29(5), 3133-3118. https://doi.org/10.1021/ef5027373
dc.relationRodrigues, R. C. L. B., Felipe, M. D. G. A., Almeida E Silva, J. B., & Vitolo, M. (2003). Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables. Process Biochemistry, 38(8), 1231-1237. https://doi.org/10.1016/S0032-9592(02)00290-X
dc.relationSáez-Plaza, P., Navas, M. J., Wybraniec, S., Michalowski, T., & Asuero, A. G. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Critical Reviews in Analytical Chemistry, 43(4), 224-272. https://doi.org/10.1080/10408347.2012.751787
dc.relationSarrouh, B. F., De Freitas Branco, R., & Da Silva, S. S. (2009). Biotechnological production of xylitol: Enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolysate. Applied Biochemistry and Biotechnology, 153(1-3), 163-170. https://doi.org/10.1007/s12010-009-8548-5
dc.relationSilva-Fernandes, T., Santos, J. C., Hasmann, F., Rodrigues, R. C. L. B., Izario Filho, H. J., & Felipe, M. G. A. (2017a). Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresource Technology, 243, 384-392. https://doi.org/10.1016/J.BIORTECH.2017.06.064
dc.relationSilva-Fernandes, T., Santos, J. C., Hasmann, F., Rodrigues, R. C. L. B., Izario Filho, H. J., & Felipe, M. G. A. (2017b). Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Bioresource Technology, 243, 384-392. https://doi.org/10.1016/J.BIORTECH.2017.06.064
dc.relationSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Ash in Biomass-NREL/TP-510-42622. Laboratory Analytical Procedure (LAP), October 2005, 7.
dc.relationSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2012). Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618. Laboratory Analytical Procedure (LAP), April 2008, 17. http://www.nrel.gov/docs/gen/fy13/42618.pdf
dc.relationSluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of Extractives in Biomass-NREL/TP-510-42619. Laboratory Analytical Procedure (LAP), July 2005, 11. https://www.nrel.gov/docs/gen/fy08/42619.pdf
dc.relationSzczerbowski, D., Pitarelo, A. P., Zandoná Filho, A., & Ramos, L. P. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydrate Polymers, 114, 95-101. https://doi.org/10.1016/j.carbpol.2014.07.052
dc.relationTorres Acosta, M. A. C. (2020). Plan de negocio para la producción y comercialización de xilitol a partir del bagazo de caña. Universidad de los Andes.
dc.relationUmai, D., Kayalvizhi, R., Kumar, V., & Jacob, S. (2022). Xylitol: Bioproduction and Applications-A Review. 3(February), 1-16. https://doi.org/10.3389/frsus.2022.826190
dc.relationVenkateswar Rao, L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresource Technology, 213, 299-310. https://doi.org/10.1016/J.BIORTECH.2016.04.092
dc.relationWang, L., Tang, P., Fan, X., & Yuan, Q. (2013). Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis. Biotechnology Progress, 29(5), 1181-1189. https://doi.org/10.1002/btpr.1774
dc.relationWang, L., Wu, D., Tang, P., & Yuan, Q. (2013). Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis. Bioprocess and Biosystems Engineering, 36(8), 1053-1061. https://doi.org/10.1007/s00449-012-0858-2
dc.relationWang, S., He, Z., & Yuan, Q. (2017). Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chemical Engineering Science, 158(15), 37-40. https://doi.org/10.1016/j.ces.2016.09.026
dc.relationWaterhouse, A. L. (2002). Determination of Total Phenolics. Current Protocols in Food Analytical Chemistry, 6(1), I1.1.1-I1.1.8. https://doi.org/10.1002/0471142913.FAI0101S06
dc.relationWen, C., Zhang, J., Duan, Y., Zhang, H., & Ma, H. (2019). A Mini-Review on Brewer's Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. Journal of Food Science, 84(12), 3330-3340. https://doi.org/10.1111/1750-3841.14906
dc.relationWest, T. P. (2021). Xylitol Production by Candida Species from Hydrolysates of Agricultural Residues and Grasses. Fermentation, 7(4), 243. https://doi.org/http://dx.doi.org/10.3390/fermentation7040243
dc.relationXu, Y., Chi, P., Bilal, M., & Cheng, H. (2019). Biosynthetic strategies to produce xylitol: an economical venture. Applied Microbiology and Biotechnology, 103(13), 5143-5160. https://doi.org/10.1007/s00253-019-09881-1
dc.relation(IMARC), I. M. A. R. (2022). Xylitol Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023-2028. https://www.imarcgroup.com/xylitol-market
dc.relationBarampouti, E. M., Mai, S., Moustakas, K., & Malamis, D. (2021). Clean Energy and Resources Recovery. Clean Energy and Resources Recovery, 49-102. https://doi.org/10.1016/c2020-0-00530-x
dc.relationBhattacharya, S. (2023). Sugars, sweeteners, chocolates, and sweet snacks. In Snack Foods. https://doi.org/10.1016/b978-0-12-819759-2.00003-3
dc.relationBianchini, I. de A. (2022). Aproveitamento do bagaço e palha de cana-de-açúcar na produção de xilitol por Candida tropicalis: Influência dos compostos tóxicos no metabolismo celular [University of São Paulo]. https://doi.org/10.11606/D.97.2022.tde-27092022-082740
dc.relationBiotech, M.-C. A. K. (n.d.). Made-in-China Connecting Buyers with Chinese Suppliers. Food Grade Pure Natural Sweetener Stevia with Best Price. https://keynovo.en.made-in-china.com/product/TdyArbqxAwkH/China-Food-Grade-Pure-Natural-Sweetener-Stevia-with-Best-Price.html
dc.relationBiotechUSA. (n.d.). BiotechUSA. Xylitol Powdered Sweetener. https://shop.biotechusa.com/products/xylitol-powdered-sweetener-500-g
dc.relationCarlson, E. C. (1996). Don't Gamble With Physical Properties For Simulation. Chemical Engineerinf Process, 92(4), 35-46.
dc.relationChe Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1-11.
dc.relationChe Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1-11. https://doi.org/10.1186/s13065-017-0285-1
dc.relationEl molino verde. (n.d.). El molino verde. XILITOL - AZÚCAR DE ABEDUL. https://elmolinoverde.com/productos/xilitol-azucar-de-abedul/
dc.relationFor, O., Of, O., & To, E. (2013). PROCESS CONCEPTS FOR CONVERSION OF BIOFUELS RESIDUE TO VALUE ADDED PRODUCT A thesis submitted to The University of Manchester for the degree of Master of Philosophy ( MPhil ) of Chemical Engineering in the Faculty of Engineering and Physical Science.
dc.relationGalbe, M., Wallberg, O., & Zacchi, G. (2011). Techno-Economic Aspects of Ethanol Production from Lignocellulosic Agricultural Crops and Residues. In Comprehensive Biotechnology (Second Edi, Vol. 1). Elsevier B.V. https://doi.org/10.1016/B978-0-08-088504-9.00298-1
dc.relationHans, M., Yadav, N., Kumar, S., Chandel, A. K., & Almeida, G. De. (2022). Market, Global Demand and Consumption Trend of Xylitol. In Current Advances in Biotechnological Production of Xylitol. https://doi.org/10.1007/978-3-031-04942-2
dc.relationHernández-Pérez, A. F., Costa, I. A. L., Silva, D. D. V., Dussán, K. J., Villela, T. R., Canettieri, E. V., Carvalho, J. A., Soares Neto, T. G., & Felipe, M. G. A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technology, 200, 1085-1088. https://doi.org/10.1016/J.BIORTECH.2015.11.036
dc.relationHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., & Dudgeon, D. (2011). Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. https://doi.org/10.2172/1013269
dc.relationIboukhoulef, H., Amrane, A., & Kadi, H. (2014). Removal of phenolic compounds from olive mill wastewater by a Fenton-like system H2O2/Cu(II)-thermodynamic and kinetic modeling. Desalination and Water Treatment, 57(4), 1874-1879. https://doi.org/10.1080/19443994.2014.978385
dc.relationICE. (n.d.). Instituto de contabilidad electrónica. Impuesto a La Renta. https://institutocontable.org/2023/05/05/impuesto-a-la-renta-2/#:~:text=El porcentaje del impuesto de renta varía según la categoría,la tasa es del 29.5%25.
dc.relationInternational Sugar Organization, I. (2023). Daily Sugar Prices. https://www.isosugar.org/prices.php
dc.relationKhoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328-2375. https://doi.org/10.3390/molecules18022328
dc.relationMade-in-China Shandong Aojing Biotechnology Co. Ltd. (n.d.). Made-in-China Connecting Buyers with Chinese Suppliers. Aojing Natural Sweetener Stevia CAS No. 57817-89-7.
dc.relationMade-in-China Shandong Richnow Chemical Co. Ltd. (n.d.). Made-in-China Connecting Buyers with Chinese Suppliers. High Quality Factory Direct Price Concession Organic Chemicals Raw Material Grade Food Grade / White Crystal / 99% Xylitol CAS: 87-99-0. https://richnowchem.en.made-in-china.com/product/kFyTeuOdpjUl/China-High-Quality-Factory-Direct-Price-Concession-Organic-Chemicals-Raw-Material-Grade-Food-Grade-White-Crystal-99-Xylitol-CAS-87-99-0.html
dc.relationMohamad, N. L., Mustapa Kamal, S. M., Mokhtar, M. N., Husain, S. A., & Abdullah, N. (2016). Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochemical Engineering Journal, 111, 10-17. https://doi.org/10.1016/j.bej.2016.02.017
dc.relationPalmer, T., & Bonner, P. L. (2011). Enzyme Inhibition. Enzymes, 126-152. https://doi.org/10.1533/9780857099921.2.126
dc.relationPanelero, F. de F. (2022). BOLETÍN DE CONSUMO I: EXPORTACIONES DE ENDULZANTES COLOMBIANOS PROGRAMA COMERCIAL Bogotá D.C., marzo de 2022. https://fedepanela.org.co/gremio/wp-content/uploads/2023/04/Boletin-de-consumo-I-Exportaciones-de-endulzantes-colombianos.pdf
dc.relationPharmaCompass. (n.d.). PHARMACOMPASS Grow Your Pharma Business Digitally. API Price Trend Dashboard-Aspartame. https://www.pharmacompass.com/price/aspartame
dc.relationRepública, B. de la. (n.d.). Banco de la República Colombia. TES. https://www.banrep.gov.co/es/estadisticas/tes#:~:text=Tasa actual%3A 13%2C25%25
dc.relationShiva. (n.d.). Shiva Productos Naturales. XILITOL ENDULZANTE 100% NATURAL. https://shiva.com.co/producto/xilitol-endulzante-100-natural/
dc.relationSweetz EZ. (n.d.). Amazon-Sucralosa pura (polvo) 100G, cumple con las normas FCC y USP. Sucralosa Pura (Polvo) 100G, Cumple Con Las Normas FCC y USP. https://www.amazon.com/Pure-Sucralose-Powder-Meets-Standards/dp/B00OP44KKI?th=1
dc.relationSylvetsky, A. C., & Rother, K. I. (2016). Trends in the consumption of low-calorie sweeteners. Physiology and Behavior, 164, 446-450. https://doi.org/10.1016/j.physbeh.2016.03.030
dc.relationTochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H. H. C., & Chisti, Y. (2005). A model of xylitol production by the yeast Candida mogii. Bioprocess and Biosystems Engineering, 28(3), 175-183. https://doi.org/10.1007/S00449-005-0025-0
dc.relationVallejos, M. E., & Area, M. C. (2017). Xylitol as Bioproduct From the Agro and Forest Biorefinery. Food Bioconversion, 2, 411-432. https://doi.org/10.1016/B978-0-12-811413-1.00012-7
dc.relationWannawilai, S., Chisti, Y., & Sirisansaneeyakul, S. (2017). A model of furfural-inhibited growth and xylitol production by Candida magnoliae TISTR 5663. Food and Bioproducts Processing, 105, 129-140. https://doi.org/10.1016/j.fbp.2017.07.002
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleValorization of sugarcane bagasse and straw through dilute acid hydrolysis for xylitol production: Operating conditions and process modeling
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución