dc.contributorEickmann, Benjamin
dc.contributorMurad Rodríguez, César Augusto
dc.creatorPineda Herrera, Juan Camilo
dc.date.accessioned2023-06-29T16:51:01Z
dc.date.accessioned2023-09-07T02:27:57Z
dc.date.available2023-06-29T16:51:01Z
dc.date.available2023-09-07T02:27:57Z
dc.date.created2023-06-29T16:51:01Z
dc.date.issued2023-05-28
dc.identifierhttp://hdl.handle.net/1992/68013
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729362
dc.description.abstractPetrographic, physicochemical, and geochemical analyses of samples from the Dresser, Strelley Pool and Tumbiana Formations revealed insight and partial evidence on some of the earliest microbial organisms that inhabited Earth during the Paleo- (3.49 and 3.42 to 3.37Ga) and Neoarchean (2.71Ga), that were presumably sulfate-reducing bacteria. A better understanding on this topic helps constraining the search for the environments where life might exist, both in and outside our planet. This investigation aimed to answer questions on the extent to which and how biogenicity criteria can be useful while working with ancient rocks conditioned by secondary post-depositional processes. Limited samples on the complex Strelley Pool Formation, however, prevented a full understanding on the role of microbial life and their interaction with different elements' biogeochemical processes and cycles. Using non-destructive methods such as X-Ray Fluorescence and Raman Spectroscopy, it was possible to obtain and identify a few characteristics for rocks associated with sulfate reducing bacteria in shallow marine and lacustrine settings, such as the circulation of elements like Mn and Zn, and the spectral differences between biogenic and abiogenic pyrite.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherGeociencias
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Geociencias
dc.relationAitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37(4), 1163-1178.
dc.relationAllwood, A. C., Grotzinger, J. P., Knoll, A. H., Burch, I. W., Anderson, M. S., Coleman, M. L., & Kanik, I. (2009). Controls on development and diversity of Early Archean stromatolites. Proceedings of the National Academy of Sciences, 106(24), 9548-9555.
dc.relationArndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F., & Thorne, A. M. (1991). The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U-Pb results. Australian Journal of Earth Sciences, 38(3), 261-281.
dc.relationAwramik, S., & Margulis, L. (1974). Definition of stromatolite: Stromatolite Newsletter (Unpublished manuscript), v. 2.
dc.relationAwramik, S. M., & Buchheim, H. P. (2001). Late Archaean lacustrine carbonates, stromatolites, and transgression. In Proceedings of the Fourth International Archaean Symposium Abstract (pp. 222-223).
dc.relationBerner RA (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1-23.
dc.relationBertrand-Sarfati, J., Freytet, P., & Plaziat, J. C. (1994). Microstructures in Tertiary Nonmarine Stromatolites (France). Comparison with Proterozoic. Phanerozoic Stromatolites II, 1908, 155-191.
dc.relationBlake, T. S. (1993). Late Archaean crustal extension, sedimentary basin formation, flood basalt volcanism and continental rifting: the Nullagine and Mount Jope Supersequences, Western Australia. Precambrian Research, 60(1-4), 185-241.
dc.relationBlake, T. S. (2001). Cyclic continental mafic tuff and flood basalt volcanism in the Late Archaean Nullagine and Mount Jope supersequences in the eastern Pilbara, Western Australia. Precambrian Research, 107(3-4), 139-177.
dc.relationBlake, T. S., & Barley, M. E. (1992). Tectonic evolution of the Late Archaean to Early Proterozoic Mount Bruce Megasequence Set, Western Australia. Tectonics, 11(6), 1415-1425.
dc.relationBlewett, R. S., Shevchenko, S., & Bell, B. (2004). The North Pole Dome: A non diapiric dome in the Archaean Pilbara Craton, Western Australia. Precambrian Research, 133(1-2), 105-120.
dc.relationBoyko, V., Avetisyan, K., Findlay, A., Guo, Q., Yang, X., Pellerin, A., & Kamyshny Jr, A. (2021). Biogeochemical cycling of sulfur, manganese and iron in ferruginous limnic analog of Archean ocean. Geochimica et Cosmochimica Acta, 296, 56-74.
dc.relationBucher WH (1913) Uber einige Fossilien und über Stromatolithbildung im Tertiär der bayerischen Rheinpfalz. München Geognostische Jahreshefte, Jahrgang 26: 76-102
dc.relationBuick, R. (1992). The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255(5040), 74-77.
dc.relationBuick, R., Dunlop, J. S., & Groves, D. I. (1981). Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early archaean chert-barite unit from north pole, Western Australia. Alcheringa, 5(3), 161-181.
dc.relationBuick, R., & Dunlop, J. S. R. (1990). Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology, 37(2), 247-277.
dc.relationBurne, R. V., & Moore, L. S. (1987). Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 241-254.
dc.relationBusigny, V., Planavsky, N. J., Jézéquel, D., Crowe, S., Louvat, P., Moureau, J., ... & Lyons, T. W. (2014). Iron isotopes in an Archean ocean analogue. Geochimica et Cosmochimica Acta, 133, 443-462.
dc.relationCrowe, S. A., Jones, C., Katsev, S., Magen, C., O'Neill, A. H., Sturm, A., ... & Fowle, D. A. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Sciences, 105(41), 15938-15943.
dc.relationDe Faria, D. L., Venâncio Silva, S., & De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman spectroscopy, 28(11), 873-878.
dc.relationDodd, M. S., Wang, H., Li, C., Towner, M., Thomson, A. R., Slack, J. F., ... & Papineau, D. (2022). Abiotic anoxic iron oxidation, formation of Archean banded iron formations, and the oxidation of early Earth. Earth and Planetary Science Letters, 584, 117469.
dc.relationDuda, J. P., Van Kranendonk, M. J., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N., & Reitner, J. (2016). A rare glimpse of paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies from the 3.4 ga strelley pool formation, Western Australia. PLoS ONE, 11(1), 1-19.
dc.relationFredsøe, J., Andersen, K. H., & Sumer, B. M. (1999). Wave plus current over a ripple-covered bed. Coastal Engineering, 38(4), 177-221.
dc.relationGerdes, G. (2007). Structures left by modern microbial mats in their host sediments. In Atlas of microbial mat features preserved within the siliciclastic rock record (Vol. 2, pp. 5-38). Amsterdam: Elsevier.
dc.relationGreen, M. G., Sylvester, P. J., & Buick, R. (2000). Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics, 322(1-2), 69-88.
dc.relationGrotzinger, J. P., & Reed, J. F. (1983). Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada. Geology, 11(12), 710-713.
dc.relationGrotzinger, J. P., & James, N. P. (2000). Precambrian Carbonates: Evolution of Understanding. In J. P. Grotzinger & N. P. James (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (Vol. 67, p. 0). SEPM Society for Sedimentary Geology.
dc.relationGrotzinger, J. R., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313-358.
dc.relationGroves, D. I., Dunlop, J. S. R., & Buick, R. (1981). An Early Habitat of Life. Scientific American, 245(4), 64-73.
dc.relationGumsley, A. P., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E. R., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811-1816.
dc.relationHabicht, K. S., Gade, M., Thamdrup, B., Berg, P., & Canfield, D. E. (2002). Calibration of sulfate levels in the Archean ocean. Science, 298(5602), 2372-2374.
dc.relationHanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941-948.
dc.relationHickman, A. H. (2008). Regional review of the 3426-3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. West Australia Geolog Surv Rec, 2008, 15.
dc.relationHoffman PF (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In: Ginsburg RN (ed) Tidal Deposits. Springer, Berlin, pp 257-265
dc.relationHofmann, H. J. (1969). Attributes of stromatolites. Geological Survey Canada Paper 69-39. Geological Survey of Canada, Dept. of Energy, Mines and Resources, Ottawa.
dc.relationHolland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903-915.
dc.relationJackson MJ (1989) Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 64-71
dc.relationKalkowsky, E. (1908). Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Der Deutschen Geologischen Gesellschaft, 60, 68-125. http://www.schweizerbart.de//papers/zdgg_alt/detail/60/66518/Oolith_und_Stromatolith_im_norddeutschen_Buntsandstein
dc.relationKrishnan, R. S. (1945). Raman spectrum of quartz. Nature, 155(3937), 452-452.
dc.relationKrishnamurti, D. (1958, May). The Raman spectrum of quartz and its interpretation. In Proceedings of the Indian Academy of Sciences-Section A (Vol. 47, No. 5, pp. 276-291). New Delhi: Springer India.
dc.relationKomar, V. A., Raaben, M. E., & Semikhatov, M. A. (1965). Conophytons in the Riphean of the USSR and their stratigraphic significance. Trudy geologicheskogo instituta, Akademiya nauk SSSR, 131, 72.
dc.relationKurzweil, F., Wille, M., Gantert, N., Beukes, N. J., & Schoenberg, R. (2016). Manganese oxide shuttling in pre-GOE oceans-evidence from molybdenum and iron isotopes. Earth and Planetary Science Letters, 452, 69-78.
dc.relationLambert, I., Donnelly, T., Dunlop, J., Groves, D., 1978. Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276, 808-811.
dc.relationLegodi, M. A., & de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and pigments, 74(1), 161-168.
dc.relationLipp, A. G., Shorttle, O., Sperling, E., Brocks, J. J., Cole, D., Crockford, P. W., ... & Emmings, J. F. (2020). The composition and weathering of the continents over geologic time.
dc.relationLowe, D. R. (1983). Restricted shallow water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19(3), 239-283.
dc.relationLowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22(5), 387-390.
dc.relationLyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23), 5698-5722.
dc.relationMiddelburg, J. J., van der Weijden, C. H., & Woittiez, J. R. (1988). Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical geology, 68(3-4), 253-273.
dc.relationMorgan, R. (2012). Iron-oxide and carbonate formation and transformations from banded iron formations 2.7 to 2.4 Ga (Doctoral dissertation, Université Paris Sud-Paris XI; Universidade federal de Minas Gerais).
dc.relationNoffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5), 649-656.
dc.relationNoffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 Billion year-old dresser formation, pilbara, Western Australia. Astrobiology, 13(12), 1103-1124.
dc.relationOlson, S. L., Kump, L. R., & Kasting, J. F. (2013). Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology, 362, 35-43.
dc.relationPacker, B. M. (1990). Sedimentology, paleontology, and stable isotope geochemistry of selected formations in the 2.7-billion-year-old Fortescue Group, western Australia. University of California, Los Angeles.
dc.relationPetrov, P. Y., & Semikhatov, M. A. (2001). Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: An example from the Burovaya formation, Turukhansk uplift, Siberia. Precambrian Research, 111(1-4), 257-281.
dc.relationPlanavsky, N. J., Slack, J. F., Cannon, W. F., O'Connell, B., Isson, T. T., Asael, D., ... & Bekker, A. (2018). Evidence for episodic oxygenation in a weakly redox buffered deep mid-Proterozoic ocean. Chemical Geology, 483, 581-594.
dc.relationPope, M. C., Grotzinger, J. P., & Schreiber, B. C. (2000). Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70(5), 1139-1151.
dc.relationPoulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431: 173-177
dc.relationPoulton SW, Fralick PW, Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3: 486-490
dc.relationPoulton, S. W., & Canfield, D. E. (2011). Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements, 7(2), 107-112.
dc.relationReinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D., & Lyons, T. W. (2009). A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326(5953), 713-716.
dc.relationReis, O. M. (1908). Kalkowsky: Ueber OC olith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch fiir Mineralogie, Geologie und Palaontologie, 2, 114-138.
dc.relationRiding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179-214.
dc.relationRiding, R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2-3): 73-103
dc.relationRiding, R. (2011). The nature of stromatolites: 3,500 million years of history and a century of research. In Advances in stromatolite geobiology (Eds.: Reitner, J., Quéric, N. V., & Arp, G.) 29-74.
dc.relationRincón-Tomás, B., Khonsari, B., Mühlen, D., Wickbold, C., Schäfer, N., Hause Reitner, D., ... & Reitner, J. (2016). Manganese carbonates as possible biogenic relics in Archean settings. International Journal of Astrobiology, 15(3), 219-229.
dc.relationSakurai, R., Ito, M., Ueno, Y., Kitajima, K., & Maruyama, S. (2005). Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. In Precambrian Research (Vol. 138, Issues 3-4, pp. 255-273).
dc.relationSami TT, James NP (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research 66: 209-222
dc.relationSemikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., & Benmore, W. C. (1979). Stromatolite morphogenesis-progress and problems. Canadian Journal of Earth Sciences, 16(5), 992-1015.
dc.relationSforna, M. C., van Zuilen, M. A., & Philippot, P. (2014). Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochimica et Cosmochimica Acta, 124, 18-33.
dc.relationSinoir, M., Butler, E. C., Bowie, A. R., Mongin, M., Nesterenko, P. N., & Hassler, C. S. (2012). Zinc marine biogeochemistry in seawater: a review. Marine and Freshwater Research, 63(7), 644-657.
dc.relationSmithies, R. H., Champion, D. C., & Cassidy, K. F. (2003). Formation of Earth's early Archaean continental crust. Precambrian Research, 127(1-3), 89-101.
dc.relationSugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K., & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147(1-2), 124-147.
dc.relationSumner, D. Y., & Grotzinger, J. P. (2004). Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51(6), 1273-1299.
dc.relationSun, J., Wu, Z., Cheng, H., Zhang, Z., & Frost, R. L. (2014). A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 158-162.
dc.relationTaylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241-265.
dc.relationThibeau, R. J., Brown, C. W., & Heidersbach, R. H. (1978). Raman spectra of possible corrosion products of iron. Applied spectroscopy, 32(6), 532-535.
dc.relationThorne, A. M., & Trendall, A. F. (2001). Geology of the Fortescue Group, Pilbara Craton, Western Australia (No. 144). Geological Survey of Western Australia.
dc.relationThorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K., & Trendall, A. F. (1992). UPb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Research, 56(3-4), 169-189.
dc.relationVan Kranendonk, M. J. (2000). Geology of the North Shaw 1: 100,000 sheet, Western Australia, 1: 100,000 geological series explanatory notes. Geol. Surv. of West. Aust., Perth.
dc.relationVan Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Nelson, D. R., & Pike, G. (2002). Geology and tectonic evolution of the archean North Pilbara terrain, Pilbara Craton, Western Australia. Economic Geology, 97(4), 695-732.
dc.relationVan Kranendonk, M. J. (2006). Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews, 74(3), 197-240.
dc.relationVan Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., & Champion, D. C. (2007). Review: Secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19(1), 1-38.
dc.relationVan Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S., & Pirajno, F. (2008). Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167(1-2), 93-124.
dc.relationVogt, H., Chattopadhyay, T., & Stolz, H. J. (1983). Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 AND SiP2. Journal of Physics and Chemistry of Solids, 44(9), 869-873.
dc.relationVologdin, A. G. (1962). The oldest algae of the USSR. Reports of USSR Academy of Sciences, 120(2), 405-408.
dc.relationWacey, D., Mcloughlin, N., Stoakes, C. A., Kilburn, M., Green, O. R., & Brasier, M. D. (2010). The 3426-3350 Ma Strelley Pool formation in the east Strelley Greenstone Belt - A field and petrographic guide. Geological Survey of Western Australia.
dc.relationWalter, MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 190
dc.relationWalter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites 3,400-3,500 Myr old from the North pole area, Western Australia. Nature, 284, 443-445.
dc.relationWalter, M.R., (1983). Archean stromatolites: evidence of the Earth's oldest benthos. In: Schopf, J.W. (Ed.), Earth's Earliest Biosphere. Princeton University Press, pp. 187-213.
dc.relationWang, X., Algeo, T. J., Liu, W., & Xu, Z. (2023). Effects of weathering and fluvial transport on detrital trace metals. Earth Science Reviews, 104420.
dc.relationZhu, L., & Li, J. (2001). Iron oxide minerals in red weathering crust of carbonate rocks. Chinese Journal of Geology, 36(4), 395-401.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleCompositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución