dc.contributorManrique Piramanrique, Rubén Francisco
dc.contributorManrique Piramanrique, Rubén Francisco
dc.contributorGrupo de investigación Flag (https://flaglab.github.io/)
dc.creatorSánchez Ardila, Juan Diego
dc.creatorOliveros Forero, Julián Esteban
dc.date.accessioned2023-06-28T19:27:55Z
dc.date.accessioned2023-09-07T02:27:15Z
dc.date.available2023-06-28T19:27:55Z
dc.date.available2023-09-07T02:27:15Z
dc.date.created2023-06-28T19:27:55Z
dc.date.issued2023-05-29
dc.identifierhttp://hdl.handle.net/1992/67952
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729350
dc.description.abstractThe emerging cryptocurrency market is undergoing rapid evolution and presenting numerous novel technologies aimed at addressing problems and capitalizing on opportunities for societal improvement. Despite substantial growth over the past decade, this market remains immature, resulting in high volatility and risk for all stakeholders involved. The primary issue lies in the market's lack of stability and predictability. The objective of this project is to enhance comprehension of market predictability by employing machine learning techniques. This endeavor aims to assist cryptocurrency investors and stakeholders in making informed decisions by predicting market prices and trends, focusing specifically on Bitcoin, Ethereum, and Cardano. Machine learning models will be trained using historical market data to achieve this goal. Furthermore, the project includes a significant ancillary objective, as relying solely on models can be ineffective. The aim is to develop a robust platform that automatically collects real-time data, incorporates an API for integrating data sources with models, and features a user interface designed to present model results to cryptocurrency stakeholders. Lastly, it is worth noting the intrinsic value of this project, which originates from a shared personal goal among the authors. As an undergraduate degree thesis, this endeavor enables the authors to gain practical knowledge in applied blockchain technology and artificial intelligence, while fostering an integrated approach that consolidates their academic formation.
dc.description.abstractEl mercado emergente de criptomonedas está experimentando una rápida evolución y presenta numerosas tecnologías novedosas destinadas a abordar problemas y capitalizar oportunidades para la mejora social. A pesar del crecimiento sustancial durante la última década, este mercado sigue siendo inmaduro, lo que resulta en una alta volatilidad y riesgo para todas las partes interesadas involucradas. El problema principal radica en la falta de estabilidad y previsibilidad del mercado. El objetivo de este proyecto es mejorar la comprensión de la previsibilidad del mercado mediante el empleo de técnicas de aprendizaje automático. Este esfuerzo tiene como objetivo ayudar a los inversores y partes interesadas en criptomonedas a tomar decisiones informadas al predecir los precios y las tendencias del mercado, centrándose específicamente en Bitcoin, Ethereum y Cardano. Los modelos de aprendizaje automático se entrenarán utilizando datos históricos del mercado para lograr este objetivo. Además, el proyecto incluye un objetivo secundario importante, ya que depender únicamente de modelos puede resultar ineficaz. El objetivo es desarrollar una plataforma sólida que recopile automáticamente datos en tiempo real, incorpore una API para integrar fuentes de datos con modelos y presente una interfaz de usuario diseñada para presentar los resultados del modelo a las partes interesadas en criptomonedas. Por último, cabe señalar el valor intrínseco de este proyecto, que parte de un objetivo personal compartido entre los autores. Como tesis de grado, este esfuerzo permite a los autores adquirir conocimientos prácticos en tecnología blockchain aplicada e inteligencia artificial, al mismo tiempo que fomenta un enfoque integrado que consolida su formación académica.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherIngeniería de Sistemas y Computación
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Sistemas y Computación
dc.relationA Brief History of Cryptocurrency - CryptoVantage. (n.d.). Retrieved February 15, 2023, from https://www.cryptovantage.com/guides/a-brief-history-of-cryptocurrency/
dc.relationBitcoin Exchange | Exchange de Criptomonedas | Binance. (n.d.). Retrieved February 16, 2023, from https://www.binance.com/es/binance-api
dc.relationCallaghan, Nathan. (2022). Using an LSTM- Recurrent Neural Network to forecast the trend in bitcoin prices.
dc.relationCryptocurrency Explained With Pros and Cons for Investment. (n.d.). Investopedia. Retrieved February 15, 2023, from https://www.investopedia.com/terms/c/cryptocurrency.asp
dc.relationDeFi vs. CeFi: Comparing decentralized to centralized finance. (n.d.). Retrieved February 15, 2023, from https://cointelegraph.com/defi-101/defi-vs-cefi-comparing-decentralized-to-centralized-finance
dc.relationIdell, A. G. (2021, July 21). Intro to Crypto Philosophy. CodeX. https://medium.com/codex/intro-to-crypto-philosophy-93b5b5525a1f
dc.relationNakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/bitcoin.pdf
dc.relationWhat Is A White Paper And How To Write It | Cointelegraph. (n.d.). Retrieved February 15, 2023, from https://cointelegraph.com/ico-101/what-is-a-white-paper-and-how-to-write-it%20
dc.relationWTF Happened In 1971? (n.d.). Retrieved February 15, 2023, from https://wtfhappenedin1971.com/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleArtificial intelligence techniques applied to cryptocurrency market prediction
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución