dc.contributor | Giraldo Gallo, Paula Liliana | |
dc.contributor | Galvis Echeverry, José Augusto | |
dc.contributor | Hernández Pico, Yenny Rocío | |
dc.contributor | Parra González, Carolina | |
dc.contributor | Quantum Materials - Uniandes | |
dc.creator | Rojas Páez, Harold Alberto | |
dc.date.accessioned | 2023-07-05T15:27:25Z | |
dc.date.accessioned | 2023-09-07T02:25:11Z | |
dc.date.available | 2023-07-05T15:27:25Z | |
dc.date.available | 2023-09-07T02:25:11Z | |
dc.date.created | 2023-07-05T15:27:25Z | |
dc.date.issued | 2023-05-29 | |
dc.identifier | http://hdl.handle.net/1992/68133 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729298 | |
dc.description.abstract | Multiferroics are materials that simultaneously exhibit more than one type of ordering such as
magnetic, electric, or elastic. Multiferroicity enables the development of new devices for information
processing and storage due to the possibility of controlling one type of polarization using a field different
from its conjugate field (e.g., magnetic polarization through an electric field). The existence of multiferroic
properties in two-dimensional (2D) materials promises advantages in the development of multifunctional
devices at smaller scales. These materials, which are intrinsically 2D, are formed by stacking atomically
thin layers of crystalline structures with Van der Walls interatomic forces between them, which permits
nano-structuration to obtain individual layers from the bulk material. One of the most studied 2D
materials families is the Transition-metal dichalcogenides (TMD), composites of the type MX2, with M
a transition-metal atom (Mo, W, etc) and X a chalcogen atom (S, Se or Te). The recent discovery of
room-temperature multiferroicity in alloys of TMDs opens new possibilities in multifuctional devices at
the nanoscale. In this thesis work we propose to study the emergence of multiferroic states in alloys of
TMDs and to explore the physical and chemical conditions favorable for their appearance. We want to
explore the possibilities opened by substitutions of chalcogen atoms, M(X_xY_{1¿x})_2, or transition metal
atoms, (M_xN_{1¿x})X_2, into the structure of the original material MX_2. In particular, we want to deepen
our understanding of electric and magnetic properties of W(Se_{1¿x}Te_x)_{2¿¿}
from bulk to the nanoscale
limit and the dependence of these properties with different tuning parameters. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | Andre K Geim and Irina V Grigorieva. Van der waals heterostructures. Nature, 499(7459):419¿
425, 2013. | |
dc.relation | Nicola A Spaldin. Multiferroics: Past, present, and future. MRS bulletin, 42(5):385¿390, 2017. | |
dc.relation | Manfred Fiebig. Revival of the magnetoelectric effect. Journal of physics D: applied physics,
38(8):R123, 2005. | |
dc.relation | Max C Lemme, Deji Akinwande, Cedric Huyghebaert, and Christoph Stampfer. 2d materials
for future heterogeneous electronics. Nature communications, 13(1):1392, 2022. | |
dc.relation | John L Hennessy and David A Patterson. A new golden age for computer architecture.
Communications of the ACM, 62(2):48¿60, 2019. | |
dc.relation | Qian Song, Connor A Occhialini, Emre Ergeçen, Batyr Ilyas, Danila Amoroso, Paolo Barone,
Jesse Kapeghian, Kenji Watanabe, Takashi Taniguchi, Antia S Botana, et al. Evidence for a
single-layer van der waals multiferroic. Nature, 602(7898):601¿605, 2022. | |
dc.relation | Ruofan Du, Yuzhu Wang, Mo Cheng, Peng Wang, Hui Li, Wang Feng, Luying Song, Jianping
Shi, and Jun He. Two-dimensional multiferroic material of metallic p-doped snse. Nature
Communications, 13(1):6130, 2022. | |
dc.relation | Rabia Tahir, Syedah Afsheen Zahra, Usman Naeem, Deji Akinwande, and Syed Rizwan. First
observation on emergence of strong room-temperature ferroelectricity and multiferroicity in
2d-ti 3 c 2 t x free-standing mxene film. RSC advances, 12(38):24571¿24578, 2022. | |
dc.relation | G. Cardenas-Chirivi, K. Vega-Bustos, H. Rojas-Páez, D. Silvera-Vega, J. Pazos, O. Herrera,
M. A. Macías, C. Espejo, W. López-Pérez, J. A. Galvis, and P. Giraldo-Gallo. Room temperature
multiferroicity in a transition metal dichalcogenide, 2023. | |
dc.relation | Daniel Khomskii. Classifying multiferroics: Mechanisms and effects. Physics, 2:20, 2009. | |
dc.relation | Kostya S Novoselov, D Jiang, F Schedin, TJ Booth, VV Khotkevich, SV Morozov, and Andre K
Geim. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences,
102(30):10451¿10453, 2005. | |
dc.relation | Nicola A Spaldin and Manfred Fiebig. The renaissance of magnetoelectric multiferroics. Science, 309(5733):391¿392, 2005. | |
dc.relation | Agnieszka Beata Kuc, Thomas Heine, and Andras Kis. Electronic properties of transitionmetal dichalcogenides. Mrs Bulletin, 40:577¿584, 2015. | |
dc.relation | Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V Yazyev, and Andras Kis. 2d
transition metal dichalcogenides. Nature Reviews Materials, 2(8):1¿15, 2017. | |
dc.relation | Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang.
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature
chemistry, 5(4):263¿275, 2013. | |
dc.relation | Jl A Wilson and AD Yoffe. The transition metal dichalcogenides discussion and interpretation
of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193¿335,
1969. | |
dc.relation | Pankaj Sharma, Fei-Xiang Xiang, Ding-Fu Shao, Dawei Zhang, Evgeny Y Tsymbal, Alex R
Hamilton, and Jan Seidel. A room-temperature ferroelectric semimetal. Science advances,
5(7):eaax5080, 2019. | |
dc.relation | Sefaattin Tongay, Sima S Varnoosfaderani, Bill R Appleton, Junqiao Wu, and Arthur F
Hebard. Magnetic properties of mos 2: Existence of ferromagnetism. Applied Physics Letters,
101(12):123105, 2012. | |
dc.relation | Hwiin Ju, Youjin Lee, Kwang-Tak Kim, In Hyeok Choi, Chang Jae Roh, Suhan Son, Pyeongjae
Park, Jae Ha Kim, Taek Sun Jung, Jae Hoon Kim, et al. Possible persistence of multiferroic
order down to bilayer limit of van der waals material nii2. Nano Letters, 21(12):5126¿5132,
2021. | |
dc.relation | Menghao Wu and Xiao Cheng Zeng. Intrinsic ferroelasticity and/or multiferroicity in twodimensional phosphorene and phosphorene analogues. Nano letters, 16(5):3236¿3241, 2016. | |
dc.relation | Karen Alejandra Vega Bustos. Variación de propiedades electrónicas del dicalcogenuro de
metal de transición wse2 a partir de dopaje químico, 2022. | |
dc.relation | Michael Binnewies, Robert Glaum, Marcus Schmidt, and Peer Schmidt. Chemical vapor
transport reactions. In Chemical Vapor Transport Reactions. de Gruyter, 2012. | |
dc.relation | Song-Lin Li, Hisao Miyazaki, Haisheng Song, Hiromi Kuramochi, Shu Nakaharai, and
Kazuhito Tsukagoshi. Quantitative raman spectrum and reliable thickness identification for
atomic layers on insulating substrates. ACS nano, 6(8):7381¿7388, 2012. | |
dc.relation | Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien
Olivier, and Dominique Baillargeat. From bulk to monolayer mos2: evolution of raman
scattering. Advanced Functional Materials, 22(7):1385¿1390, 2012. | |
dc.relation | ] Najme S Taghavi, Patricia Gant, Peng Huang, Iris Niehues, Robert Schmidt, Steffen
Michaelis de Vasconcellos, Rudolf Bratschitsch, Mar García-Hernández, Riccardo Frisenda,
and Andres Castellanos-Gomez. Thickness determination of mos2, mose2, ws2 and wse2 on
transparent stamps used for deterministic transfer of 2d materials. Nano Research, 12(7):1691¿
1695, 2019. | |
dc.relation | Min Yi and Zhigang Shen. A review on mechanical exfoliation for the scalable production of
graphene. Journal of Materials Chemistry A, 3(22):11700¿11715, 2015. | |
dc.relation | Qinghua Zhao, Tao Wang, Yu Kyoung Ryu, Riccardo Frisenda, and Andres CastellanosGomez. An inexpensive system for the deterministic transfer of 2d materials. Journal of
Physics: Materials, 3(1):016001, 2020. | |
dc.relation | Seungbum Hong, Jungwon Woo, Hyunjung Shin, Jong Up Jeon, Y Eugene Pak, Enrico L
Colla, Nava Setter, Eunah Kim, and Kwangsoo No. Principle of ferroelectric domain imaging
using atomic force microscope. Journal of Applied Physics, 89(2):1377¿1386, 2001. | |
dc.relation | Victorino Franco and Brad Dodrill. Magnetic measurement techniques for materials characterization.
Springer, 2021. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Multiferroicity in alloys of 2D transition-metal dichalcogenides | |
dc.type | Trabajo de grado - Maestría | |