dc.contributorFlórez Bustos, Carlos Andrés
dc.contributorKelkar, Neelima Govind
dc.contributorBernal Hernández, Nicolás
dc.contributorGrupo de Física de Altas Energías de la Universidad de los Andes
dc.creatorRodríguez Cruz, Cristian Fernando
dc.date.accessioned2023-05-23T13:48:17Z
dc.date.accessioned2023-09-07T02:22:04Z
dc.date.available2023-05-23T13:48:17Z
dc.date.available2023-09-07T02:22:04Z
dc.date.created2023-05-23T13:48:17Z
dc.date.issued2022-06-06
dc.identifierhttp://hdl.handle.net/1992/66750
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729221
dc.description.abstractThe standard model (SM) of particle physics is the most successful theory we have when it comes to describing the functioning of the subatomic world. Day by day, the SM is put to test by different experiments conducted around the world, aimed to test its validity. The project that is, perhaps, the most important in this frontier is the Large Hadron Collider (LHC). One of the goals of the experiments at the LHC is to accurately measure the parameters of the SM, and also search for any deviation from the SM predictions that could indicate new physics. In recent years, the observations reported by LHCb, Babar, and Belle experiments of the apparent anomalies in B-meson decays, together with the possible anomaly on the magnetic angular momentum of muons reported by the Muon g - 2 experiment at Fermilab, indicate that, perhaps, lepton flavour universality is violated in the SM, in turn being a window to search new physics. Of the new models that intent to extend the SM to explain violation of lepton flavour universality, several of them introduce new particles with preferential couplings to third generation fermions. Some of the most popular models include the hypothetical production of heavy mass particles such as Z', W', and Leptoquarks (LQ). In this project, we seek to conduct feasibility studies for the LHC associated with the production of these new hypothetical particles through different production mechanism and with preferential couplings to third generation fermions. These studies will be conducted using different simulation packages to emulate the LHC conditions and the statistical analysis will use Machine Learning (ML) methods.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias - Física
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationAndreas Crivellin and Martin Hoferichter. "Hints of lepton flavor universality violations". In: Science 374.6571 (2021), pp. 1051-1052. DOI: 10.1126/science.abk2450.
dc.relationLyndon Evans and Philip Bryant. "LHC Machine". In: Journal of Instrumentation 3.08 (2008), S08001-S08001. DOI: 10.1088/1748-0221/3/08/s08001.
dc.relationDavid J Muller and Satyanarayan Nandi. "Topflavor: a separate SU(2) for the third family" In: Physics Letters B 383.3 (1996), pp. 345-350. ISSN: 0370-2693. DOI: 10 . 1016 / 0370 - 2693(96)00745-9.
dc.relationDavid B. Kaplan, Howard Georgi, and Savas Dimopoulos. "Composite Higgs scalars". In: Physics Letters B 136.3 (1984), pp. 187-190. ISSN: 0370-2693. DOI: 10 . 1016 / 0370 - 2693(84)91178-X.
dc.relationDavid B. Kaplan and Howard Georgi. "SU(2)U(1) breaking by vacuum misalignment". In: Physics Letters B 136.3 (1984), pp. 183-186. ISSN: 0370-2693. DOI: 10 . 1016 / 0370 - 2693(84)91177-8.
dc.relationMaxim Perelstein. "Little Higgs models and their phenomenology". In: Progress in Particle and Nuclear Physics 58.1 (2007), pp. 247-291. ISSN: 0146-6410. DOI: 10.1016/j.ppnp. 2006.04.001.
dc.relationLeonard Susskind. "Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory". In: Phys. Rev. D 20 (10 1979), pp. 2619-2625. DOI: 10.1103/PhysRevD.20.2619.
dc.relationHoward Georgi and S. L. Glashow. "Unity of All Elementary-Particle Forces". In: Phys. Rev. Lett. 32 (8 1974), pp. 438-441. DOI: 10.1103/PhysRevLett.32.438.
dc.relationMohammad Abdullah et al. "Probing a simplified W0 model of R(D( )) anomalies using b tags, leptons, and missing energy". In: Phys. Rev. D 98 (5 2018), p. 055016. DOI: 10.1103/ PhysRevD.98.055016.
dc.relationMichael J. Baker et al. "High-$$p T$$signatures in vector leptoquark models". In: The European Physical Journal C 79.4 (2019), p. 334. ISSN: 1434-6052. DOI: 10.1140/epjc/ s10052-019-6853-x.
dc.relationKeith R. Dienes, Emilian Dudas, and Tony Gherghetta. "Grand unification at intermediate mass scales through extra dimensions". In: Nuclear Physics B 537.1 (1999), pp. 47-108. ISSN: 0550-3213. DOI: https://doi.org/10.1016/S0550-3213(98)00669-5.
dc.relationChristopher T. Hill. "Topcolor assisted technicolor". In: Physics Letters B 345.4 (1995), pp. 483-489. ISSN: 0370-2693. DOI: 10.1016/0370-2693(94)01660-5.
dc.relationEhab Malkawi, Tim Tait, and C.-P. Yuan. "A model of strong flavor dynamics for the top quark". In: Physics Letters B 385.1 (1996), pp. 304-310. ISSN: 0370-2693. DOI: https:// doi.org/10.1016/0370-2693(96)00859-3.
dc.relationGustavo Burdman, Bogdan A. Dobrescu, and Eduardo Pont´on. "Resonances from two universal extra dimensions". In: Phys. Rev. D 74 (7 2006), p. 075008. DOI: 10 . 1103 / PhysRevD.74.075008.
dc.relationWolfgang Altmannshofer et al. In: The European Physical Journal C 77.6 (2017), p. 377. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-017-4952-0.
dc.relationGudrun Hiller and Martin Schmaltz. "RK and future b ! s`` BSM opportunities ". In: 90.5 (2014). DOI: 10.1103/physrevd.90.054014. URL: https://doi.org/10.1103% 2Fphysrevd.90.054014.
dc.relationGudrun Hiller and Martin Schmaltz. "Diagnosing lepton-nonuniversality in b ! s` `". In: Journal of High Energy Physics 2015.2 (2015). DOI: 10.1007/jhep02(2015)055.
dc.relationAndreas Crivellin, Giancarlo D'Ambrosio, and Julian Heeck. "Addressing the LHC flavor anomalies with horizontal gauge symmetries". In: Physical Review D 91.7 (2015). DOI: 10. 1103/physrevd.91.075006.
dc.relationT. Hurth, F. Mahmoudi, and S. Neshatpour. "On the anomalies in the latest LHCb data". In: Nuclear Physics B 909 (2016), pp. 737-777. ISSN: 0550-3213. DOI: 10.1016/j.nuclphysb. 2016.05.022.
dc.relationAndreas Crivellin et al. "Lepton-flavor violating B decays in generic Z0 models". In: Phys. Rev. D 92 (5 2015), p. 054013. DOI: 10.1103/PhysRevD.92.054013.
dc.relationBernat Capdevila et al. "Hadronic uncertainties in B K? + ?: a state-of-the-art analysis". In: Journal of High Energy Physics 2017.4 (2017), p. 16. ISSN: 1029-8479. DOI: 10.1007/ JHEP04(2017)016.
dc.relationV. G. Chobanova et al. "Large hadronic power corrections or new physics in the rare decay B K? + ??" In: Journal of High Energy Physics 2017.7 (2017), p. 25. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2017)025.
dc.relationRupert Coy et al. "New physics in b ! s`` transitions at one loop". In: The European Physical Journal C 80.1 (2020), p. 52. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-019-7581-y.
dc.relationBernat Capdevila et al. "Patterns of New Physics in b ! s`+` transitions in the light of recent data" In: Journal of High Energy Physics 2018.1 (2018). DOI: 10 . 1007 / jhep01(2018)093.
dc.relationClaudia Cornella, Javier Fuentes-Martín, and Gino Isidori. "Revisiting the vector leptoquark explanation of the B-physics anomalies". In: Journal of High Energy Physics 2019.7 (2019). DOI: 10.1007/jhep07(2019)168.
dc.relationAlejandro Celis et al. "Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality". In: Physical Review D 96.3 (2017). DOI: 10 . 1103 / physrevd.96.035026.
dc.relationJos´e Eliel Camargo-Molina, Alejandro Celis, and Darius A. Faroughy. "Anomalies in bottom from new physics in top". In: Physics Letters B 784 (2018), pp. 284-293. DOI: 10. 1016/j.physletb.2018.07.051.
dc.relationRafael Aoude et al. "The impact of flavour data on global fits of the MFV SMEFT". In: Journal of High Energy Physics 2020.12 (2020). DOI: 10.1007/jhep12(2020)113.
dc.relationW Greiner. Relativistic Quantum Mechanics. Wave Equations. Springer, 2000. ISBN: 9783540674573.
dc.relationStefan Pokorski. Gauge field theories. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2000. ISBN: 9780521478168.
dc.relationDavid Tong. Quantum Field Theory University of Cambridge Part III Mathematical Tripos. Vol. 45. 12. 1995.
dc.relationCristian Rodriguez. "Evaluacion del Lagrangiano de Supergravedad N = 1 utilizando el formalismo Superconforme." BA thesis. UPTC, 2018.
dc.relationHerbert Goldstein, Charles P Poole, and John L Safko. Classical mechanics. 3rd ed. Addison Wesley, 2001. ISBN: 9780201657029,0201657023.
dc.relationJ V Jos´e and E J Saletan. Classical Dynamics: A Contemporary Approach. Cambridge University Press, 1998. ISBN: 9780521636360
dc.relationRoberto Martínez. "Teoría cuántica de campos". Colección Textos. Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Física, 2002. ISBN: 9789587011203.
dc.relationSteven Weinberg. The Quantum Theory of Fields, Volume 3: Supersymmetry. Cambridge University Press, 2005. ISBN: 0521670551,9780521670555.
dc.relationD.A. Bromley Walter Greiner Joachim Reinhardt. Field quantization. 1st ed. Springer, 1996. ISBN: 3540591796,9783540591795.
dc.relationDan V. Schroeder Michael E. Peskin. An Introduction To Quantum Field Theory. Frontiers in Physics. Westview Press, 1995. ISBN: 9780201503975,0201503972.
dc.relationP C W Davies N. D. Birrell. Quantum fields in curved space. CUP. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 1984. ISBN: 9780521278584,0521278589.
dc.relationDaniel Z. Freedman and Antoine Van Proeyen. Supergravity. Cambridge University Press, 2012. ISBN: 9780521194013.
dc.relationAmitabha Lahiri and Palash B Pal. A First Book of Quantum Field Theory. Alpha Science International, 2006, p. 380. ISBN: 1842652494.
dc.relationDiego Gallego. Estudio de uplifts efectivos en compactificaciones de supercuerdas tipo-IIB. Tech. rep. Tunja: Universidad Pedag´ogica y Tecnolog´ogica de Colombia, 2016, p. 96.
dc.relationAntoine Van Proeyen. "Tools for Supersymmetry". In: Physics AUC 9.I (1999), pp. 1-49. arXiv: 9910030 [hep-th].
dc.relationStephen P. Martin. "TASI 2011 lectures notes: two-component fermion notation and supersymmetry". In: arXiv (2012). arXiv: 1205.4076.
dc.relationM Robinson. Symmetry and the Standard Model: Mathematics and Particle Physics. 1st ed. SpringerLink : Bucher. New York: Springer-Verlag, 2011. ISBN: 9781441982674. DOI: 10. 1007/978-1-4419-8267-4.
dc.relation"Physics: 1963-1970. In: Nobel lectures, including presentation speeches and laureates" biographies. Elsevier Publishing Company, 1972.
dc.relationF. J. Dyson. "The Radiation Theories of Tomonaga, Schwinger, and Feynman". In: Phys. Rev. 75 (3 1949), pp. 486-502. DOI: 10.1103/PhysRev.75.486.
dc.relationP.A. Zyla et al. "Review of Particle Physics". In: PTEP 2020.8 (2020), p. 083C01. DOI: 10. 1093/ptep/ptaa104.
dc.relationC. S.Wu et al. "Experimental Test of Parity Conservation in Beta Decay". In: Phys. Rev. 105 (4 1957), pp. 1413-1415. DOI: 10.1103/PhysRev.105.1413.
dc.relationTadao Nakano and Kazuhiko Nishijima. "Charge Independence for V-particles*". In: Progress of Theoretical Physics 10.5 (Nov. 1953), pp. 581-582. ISSN: 0033-068X. DOI: 10 . 1143/PTP.10.581.
dc.relationB. Odom et al. "New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron". In: Phys. Rev. Lett. 97 (3 2006), p. 030801. DOI: 10 . 1103 / PhysRevLett.97.030801.
dc.relationSteven Weinberg. "A Model of Leptons". In: Phys. Rev. Lett. 19 (21 1967), pp. 126-1266. DOI: 10.1103/PhysRevLett.19.1264.
dc.relationSheldon L. Glashow. "Partial-symmetries of weak interactions". In: Nuclear Physics 22.4 (1961), pp. 579-588. ISSN: 0029-5582. DOI: https : / / doi . org / 10 . 1016 / 0029 - 5582(61)90469-2.
dc.relationAlejandro Rivero and Andre Gsponer. The strange formula of Dr. Koide. 2005. DOI: 10 . 48550/ARXIV.HEP-PH/0505220.
dc.relationCarlo Rovelli. Quantum gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2007. ISBN: 9780521715966,0521715962.
dc.relationRonald J. Adler, Brendan Casey, and Ovid C. Jacob. "Vacuum catastrophe: An elementary exposition of the cosmological constant problem". In: American Journal of Physics 63 (7 July 1995), pp. 620-626. ISSN: 0002-9505. DOI: 10.1119/1.17850.
dc.relationA. N. Lasenby M. P. Hobson G. P. Efstathiou. General relativity: an introduction for physicists. Cambridge University Press, 2005. ISBN: 9780521536394.
dc.relationA.D. Sakharov. "Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe". In: Soviet Journal of Experimental and Theoretical Physics Letters 5 (Jan. 1967), p. 24.
dc.relationG. t Hooft. "Symmetry Breaking through Bell-Jackiw Anomalies". In: Phys. Rev. Lett. 37 (1 1976), pp. 8-11. DOI: 10.1103/PhysRevLett.37.8.
dc.relationJames M. Cline. Baryogenesis. 2006. DOI: 10.48550/ARXIV.HEP-PH/0609145.
dc.relationS. Abe et al. "Precision Measurement of Neutrino Oscillation Parameters with KamLAND". In: Physical Review Letters 100.22 (2008). DOI: 10 . 1103 / physrevlett . 100.221803.
dc.relationJ. P. Lees et al. "Evidence for an Excess of B ! D( ) Decays". In: Phys. Rev. Lett. 109 (10 2012), p. 101802. DOI: 10.1103/PhysRevLett.109.101802.
dc.relationR. Aaij et al. "Measurement of the Ratio of Branching Fractions B(B0! D + ¿ )=B(B 0! D + ¿)". In: Phys. Rev. Lett. 115 (11 2015), p. 111803. DOI: 10.1103/PhysRevLett. 115.111803.
dc.relationWolfgang Altmannshofer and David M. Straub. "New physics in b ! s transitions after LHC run 1". In: The European Physical Journal C 75.8 (2015). DOI: 10.1140/epjc/s10052- 015-3602-7.
dc.relationT. Hurth, F. Mahmoudi, and S. Neshatpour. "On the anomalies in the latest LHCb data". In: Nuclear Physics B 909 (2016), pp. 737-777. DOI: 10.1016/j.nuclphysb.2016.05.022.
dc.relationLHCb Collaboration et al. Test of lepton universality in beauty-quark decays. 2021. DOI: 10. 48550/ARXIV.2103.11769.
dc.relationThomas Blum et al. The Muon (g-2) Theory Value: Present and Future. 2013. DOI: 10.48550/ ARXIV.1311.2198.
dc.relationB. Abi et al. "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". In: Physical Review Letters 126.14 (2021). DOI: 10.1103/physrevlett.126. 141801.
dc.relationCDF COllaboration et al. "High-precision measurement of theW boson mass with the CDF II detector". In: Science 376.6589 (2022), pp. 170-176. DOI: 10.1126/science.abk1781.
dc.relationM. Aaboud et al. "Measurement of the W-boson mass in pp collisions at p s = 7 TeV with the ATLAS detector". In: The European Physical Journal C 78.2 (2018). DOI: 10.1140/epjc/ s10052-017-5475-4.
dc.relationR. Aaij et al. "Measurement of the W boson mass". In: Journal of High Energy Physics 2022.1 (2022). DOI: 10.1007/jhep01(2022)036.
dc.relationS. Schael et al. "Measurement of the W boson mass and width in e+e- collisions at LEP". In: The European Physical Journal C 47.2 (2006), pp. 309-335. DOI: 10.1140/epjc/s2006- 02576-8.
dc.relationV. M. Abazov et al. "Measurement of theW Boson Mass with the D0 Detector". In: Physical Review Letters 108.15 (2012). DOI: 10.1103/physrevlett.108.151804.
dc.relationJ. C. Hardy and I. S. Towner. "Superallowed 0+ ! 0+ nuclear decays: 2020 critical survey, with implications for Vud and CKM unitarity". In: Phys. Rev. C 102 (4 2020), p. 045501. DOI: 10.1103/PhysRevC.102.045501.
dc.relationAndreas Crivellin and Martin Hoferichter. " Decays as Sensitive Probes of Lepton Flavor Universality". In: Phys. Rev. Lett. 125 (11 2020), p. 111801. DOI: 10.1103/PhysRevLett. 125.111801.
dc.relationThe CMS collaboration. "Search for resonant and nonresonant new phenomena in high-mass dilepton final states at p s= 13 TeV¿. In: Journal of High Energy Physics 2021.7 (2021), p. 208. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2021)208.
dc.relationIzaak Neutelings. CMS coordinate system. URL: https://tikz.net/axis3d_cms.
dc.relationWerner Herr and B Muratori. "Concept of luminosity". In: (2006). DOI: 10.5170/CERN- 2006-002.361. URL: http://cds.cern.ch/record/941318.
dc.relationMark Thomson. Modern Particle Physics. Cambridge University Press, 2013. ISBN: 978-1-107-03426-6.
dc.relationJ. Alwall et al. "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations". In: Journal of High Energy Physics 2014.7 (2014). DOI: 10.1007/jhep07(2014)079.
dc.relationAdam Alloul et al. "FeynRules 2.0 A complete toolbox for tree-level phenomenology". In: Computer Physics Communications 185.8 (2014), pp. 2250-2300. ISSN: 0010-4655. DOI: https://doi.org/10.1016/j.cpc.2014.04.012.
dc.relationChristian Bierlich et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. 2022. DOI: 10.48550/ARXIV.2203.11601.
dc.relationJ. de Favereau et al. "DELPHES 3: a modular framework for fast simulation of a generic collider experiment". In: Journal of High Energy Physics 2014.2 (2014). DOI: 10 . 1007 / jhep02(2014)057.
dc.relationG. Hackeling. Mastering Machine Learning with scikit-learn. Packt Publishing, 2017. ISBN: 9781788298490.
dc.relationF. Pedregosa et al. "Scikit-learn: Machine Learning in Python". In: Journal of Machine Learning Research 12 (2011), pp. 2825-2830.
dc.relationJ. VanderPlas. Python Data Science Handbook: Essential Tools for Working with Data. O'Reilly Media, 2016. ISBN: 9781491912133.
dc.relationThe CMS Collaboration. "The CMS experiment at the CERN LHC". In: Journal of Instrumentation 3.08 (2008), S08004-S08004. DOI: 10.1088/1748-0221/3/08/s08004.
dc.relationThe LHCb collaboration. "Differential branching fractions and isospin asymmetries of B 7! K(*) + ? decays". In: Journal of High Energy Physics 2014.6 (2014), p. 133. ISSN: 1029-8479. DOI: 10.1007/JHEP06(2014)133.
dc.relationThe Belle Collaboration. Precise determination of the CKM matrix element jVcbj with B0 ! D ¿`+ ` decays with hadronic tagging at Belle. 2017. DOI: 10.48550/ARXIV.1702.01521.
dc.relationMartin Jung and David M. Straub. Constraining new physics in b 7! c` transitions. 2019. DOI: 10.1007/JHEP01(2019)009.
dc.relationY. Amhis et al. "Averages of b-hadron, c-hadron, and $$ntau $$-lepton properties as of 2018". In: The European Physical Journal C 81.3 (2021). DOI: 10.1140/epjc/s10052- 020-8156-7. URL: https://doi.org/10.1140%2Fepjc%2Fs10052-020-8156-7.
dc.relationS´ebastien Descotes-Genon et al. "Implications from clean observables for the binned analysis of B K? + ? at large recoil". In: Journal of High Energy Physics 2013.1 (2013), p. 48. ISSN: 1029-8479. DOI: 10.1007/JHEP01(2013)048.
dc.relationGudrun Hiller and Frank Kr¨ uger. "More model-independent analysis of ! b s processes". In: Phys. Rev. D 69 (7 2004), p. 074020. DOI: 10.1103/PhysRevD.69.074020.
dc.relationMarzia Bordone, Gino Isidori, and Andrea Pattori. "On the standard model predictions for RK and RK ". In: The European Physical Journal C 76.8 (2016), p. 440. ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-016-4274-7.
dc.relationThe LHCb collaboration. "Test of lepton universality with B0 K*0?+?? decays". In: Journal of High Energy Physics 2017.8 (2017), p. 55. ISSN: 1029-8479. DOI: 10 . 1007 / JHEP08(2017)055. URL: https://doi.org/10.1007/JHEP08(2017)055.
dc.relationBelle Collaboration. In: 126.16 (2021). DOI: 10.1103/physrevlett.126.161801.
dc.relationDario Buttazzo et al. "B-physics anomalies: a guide to combined explanations". In: Journal of High Energy Physics 2017.11 (2017). DOI: 10.1007/jhep11(2017)044.
dc.relationMichael J. Baker et al. Vector-leptoquark model. URL: https://feynrules.irmp.ucl. ac.be/wiki/LeptoQuark.
dc.relationYuta Takahashi. Leptoquark searches in CMS. 2019. DOI: 10.48550/ARXIV.1901.03570.
dc.relationIlja Dorsner and Admir Greljo. "Leptoquark toolbox for precision collider studies". In: Journal of High Energy Physics 2018.5 (2018). DOI: 10.1007/jhep05(2018)126.
dc.relationAndreas Albert. lhereader. Version 1.0.11. URL: https : / / pypi . org / project / lhereader/.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleFeasibility studies on the production of new particles with preferential couplings to third generation fermions at the LHC
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución