dc.contributor | Duitama Castellanos, Jorge Alexander | |
dc.contributor | González Barrios, Andrés Fernando | |
dc.contributor | Chacón Sánchez, María Isabel | |
dc.contributor | Grupo de Diseño de Productos y Procesos (GDPP) | |
dc.contributor | TICSw | |
dc.creator | Duarte Torres, Erick Nicolas | |
dc.date.accessioned | 2023-07-05T15:15:26Z | |
dc.date.accessioned | 2023-09-07T02:19:47Z | |
dc.date.available | 2023-07-05T15:15:26Z | |
dc.date.available | 2023-09-07T02:19:47Z | |
dc.date.created | 2023-07-05T15:15:26Z | |
dc.date.issued | 2023-06-06 | |
dc.identifier | http://hdl.handle.net/1992/68132 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8729171 | |
dc.description.abstract | In this research, we present the first metabolic reconstruction of the Phaseolus genus, based on Phaseolus vulgaris metabolic data and incorporating cyanogenesis pathways from Phaseolus lunatus. Our model successfully simulates the plant cell metabolism under photoperiod conditions, making it a valuable tool for studying the metabolims of Phaseolus species. Additionally, we conducted a genomic comparison analysis between the two Phaseolus species to gather data for imposing contrainsts, enabling the simulation of linamarin and lotaustralin biosynthesis, both cyanogenic compounds. By studiyng these pathways, we gained insights into the genomic elements and metabolic mechanism responsible for the high production of linamarin in P. lunatus. In addition, we conducted an optimization analyses to identify metabolic differences that could explain the observed overproduction of linamarin compared to lotaustralin in P. lunatus. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Biología Computacional | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Ciencias Biológicas | |
dc.relation | Akunne (formerly Okoye), T., Uzor, P., Onyeto, C., & Okereke, E. (2014). Safe African Medicinal Plants for Clinical Studies. En Toxicological Survey of African Medicinal Plants (pp. 535-555).
https://doi.org/10.1016/B978-0-12-800018-2.00018-2https://doi.org/10.1111/tpj.13075 | |
dc.relation | Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search
tool. Journal of Molecular Biology, 215(3), 403-410.
https://doi.org/10.1016/S0022-2836(05)80360-2 | |
dc.relation | Andersen, M. D., Busk, P. K., Svendsen, I., & Møller, B. L. (2000). Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. The Journal of Biological Chemistry, 275(3), 1966-1975. https://doi.org/10.1074/jbc.275.3.1966 | |
dc.relation | Ballhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of Wild Lima Bean
(Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature. PLOS ONE, 4(5), e5450.
https://doi.org/10.1371/journal.pone.0005450 | |
dc.relation | Baudoin, J.-P. (1975, junio). Lima bean breeding program. https://cgspace.cgiar.org/handle/10568/98189 | |
dc.relation | Becker, S. A., & Palsson, B. Ø. (2005). Genome-scale reconstruction of the metabolic network in
Staphylococcus aureus N315: An initial draft to the two-dimensional annotation. BMC
Microbiology, 5(1), 8. https://doi.org/10.1186/1471-2180-5-8 | |
dc.relation | Bekaert, M., Edger, P. P., Hudson, C. M., Pires, J. C., & Conant, G. C. (2012). Metabolic and evolutionary costs of herbivory defense: Systems biology of glucosinolate synthesis. New Phytologist, 196(2),
596-605. https://doi.org/10.1111/j.1469-8137.2012.04302.x | |
dc.relation | Bernstein, D. B., Sulheim, S., Almaas, E., & Segrè, D. (2021). Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 22(1), 64.
https://doi.org/10.1186/s13059-021-02289-z | |
dc.relation | Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution.
Frontiers in Plant Science, 8. https://www.frontiersin.org/articles/10.3389/fpls.2017.00722 | |
dc.relation | Bogart, E., & Myers, C. R. (2016). Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves. PLOS ONE,
11(3), e0151722. https://doi.org/10.1371/journal.pone.0151722 | |
dc.relation | Botero, K., Restrepo, S., & Pinzón, A. (2018a). A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics, 19(8), 863.
https://doi.org/10.1186/s12864-018-5192-x | |
dc.relation | Botero, K., Restrepo, S., & Pinzón, A. (2018b). A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics, 19(8), 863.
https://doi.org/10.1186/s12864-018-5192-x | |
dc.relation | Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252(1), 55-128.
https://doi.org/10.1023/A:1024146710611 | |
dc.relation | Charif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. En U. Bastolla, M. Porto, H. E. Roman, & M. Vendruscolo (Eds.), Structural Approaches to Sequence Evolution: Molecules,
Networks, Populations (pp. 207-232). Springer. https://doi.org/10.1007/978-3-540-35306-5_10 | |
dc.relation | Chatterjee, A., Huma, B., Shaw, R., & Kundu, S. (2017). Reconstruction of Oryza sativa indica Genome Scale Metabolic Model and Its Responses to Varying RuBisCO Activity, Light Intensity, and Enzymatic Cost Conditions. Frontiers in Plant Science, 8.
https://www.frontiersin.org/articles/10.3389/fpls.2017.02060 | |
dc.relation | Chatterjee, A., & Kundu, S. (2015). Revisiting the chlorophyll biosynthesis pathway using genome scale metabolic model of Oryza sativa japonica. Scientific Reports, 5(1), Article 1.
https://doi.org/10.1038/srep14975 | |
dc.relation | Cheung, C. Y. M., Poolman, M. G., Fell, David. A., Ratcliffe, R. G., & Sweetlove, L. J. (2014). A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves. Plant Physiology, 165(2), 917-929.
https://doi.org/10.1104/pp.113.234468 | |
dc.relation | de Oliveira Dal'Molin, C. G., Orellana, C., Gebbie, L., Steen, J., Hodson, M. P., Chrysanthopoulos, P., Plan, M. R., McQualter, R., Palfreyman, R. W., & Nielsen, L. K. (2016). Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses. Frontiers in Plant Science, 7.
https://www.frontiersin.org/articles/10.3389/fpls.2016.01138 | |
dc.relation | de Oliveira Dal'Molin, C. G., Quek, L.-E., Palfreyman, R. W., Brumbley, S. M., & Nielsen, L. K. (2010a). C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism. Plant
Physiology, 154(4), 1871-1885. https://doi.org/10.1104/pp.110.166488 | |
dc.relation | Ebrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 7(1), 74.
https://doi.org/10.1186/1752-0509-7-74 | |
dc.relation | Edger, P. P., Heidel-Fischer, H. M., Bekaert, M., Rota, J., Glöckner, G., Platts, A. E., Heckel, D. G., Der, J. P., Wafula, E. K., Tang, M., Hofberger, J. A., Smithson, A., Hall, J. C., Blanchette, M., Bureau, T. E., Wright, S. I., dePamphilis, C. W., Eric Schranz, M., Barker, M. S., ... Wheat, C. W. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 112(27), 8362-8366.
https://doi.org/10.1073/pnas.1503926112 | |
dc.relation | FAO. (2018). Legumbres. Pequeñas semillas, grandes soluciones. 292. | |
dc.relation | Forslund, K., Morant, M., Jørgensen, B., Olsen, C. E., Asamizu, E., Sato, S., Tabata, S., & Bak, S. (2004).Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides
lotaustralin and linamarin in Lotus japonicus. Plant Physiology, 135(1), 71-84.
https://doi.org/10.1104/pp.103.038059 | |
dc.relation | Garcia, T., Duitama, J., Zullo, S. S., Gil, J., Ariani, A., Dohle, S., Palkovic, A., Skeen, P.,
Bermudez-Santana, C. I., Debouck, D. G., Martínez-Castillo, J., Gepts, P., & Chacón-Sánchez, M.
I. (2021). Comprehensive genomic resources related to domestication and crop improvement
traits in Lima bean. Nature Communications, 12(1), Article 1.
https://doi.org/10.1038/s41467-021-20921-1 | |
dc.relation | Gerlin, L., Frainay, C., Jourdan, F., Baroukh, C., & Prigent, S. (2021). Chapter Eight-Plant
genome-scale metabolic networks. En P. Pétriacq & A. Bouchereau (Eds.), Advances in Botanical
Research (Vol. 98, pp. 237-270). Academic Press. https://doi.org/10.1016/bs.abr.2020.09.021 | |
dc.relation | Gioia, T., Logozzo, G., Marzario, S., Zeuli, P. S., & Gepts, P. (2019). Evolution of SSR diversity from
wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of
common bean (Phaseolus vulgaris). PLOS ONE, 14(1), e0211342.
https://doi.org/10.1371/journal.pone.0211342 | |
dc.relation | Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W.,
Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green
plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186.
https://doi.org/10.1093/nar/gkr944 | |
dc.relation | Gudmundsson, S., & Thiele, I. (2010). Computationally efficient flux variability analysis. BMC
Bioinformatics, 11(1), 489. https://doi.org/10.1186/1471-2105-11-489 | |
dc.relation | Gutiérrez Salgado, A., Gepts, P., & Debouck, D. G. (1995). Evidence for two gene pools of the Lima
bean,Phaseolus lunatus L., in the Americas. Genetic Resources and Crop Evolution, 42(1), 15-28.
https://doi.org/10.1007/BF02310680 | |
dc.relation | Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1),D587-D592. https://doi.org/10.1093/nar/gkac963 | |
dc.relation | Karp, P. D., Midford, P. E., Billington, R., Kothari, A., Krummenacker, M., Latendresse, M., Ong, W. K.,
Subhraveti, P., Caspi, R., Fulcher, C., Keseler, I. M., & Paley, S. M. (2021). Pathway Tools
version 23.0 update: Software for pathway/genome informatics and systems biology. Briefings in
Bioinformatics, 22(1), 109-126. https://doi.org/10.1093/bib/bbz104 | |
dc.relation | Lai, D., Maimann, A. B., Macea, E., Ocampo, C. H., Cardona, G., Picmanová, M., Darbani, B., Olsen, C.
E., Debouck, D., Raatz, B., Møller, B. L., & Rook, F. (2020). Biosynthesis of cyanogenic
glucosides in Phaseolus lunatus and the evolution of oxime-based defenses. Plant Direct, 4(8),
e00244. https://doi.org/10.1002/pld3.244 | |
dc.relation | Lakshmanan, M., Lim, S.-H., Mohanty, B., Kim, J. K., Ha, S.-H., & Lee, D.-Y. (2015). Unraveling the
Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico
Modeling and Multiomics Analysis. Plant Physiology, 169(4), 3002-3020.
https://doi.org/10.1104/pp.15.01379 | |
dc.relation | Liu, L., Mei, Q., Yu, Z., Sun, T., Zhang, Z., & Chen, M. (2013). An Integrative Bioinformatics
Framework for Genome-scale Multiple Level Network Reconstruction of Rice. Journal of
Integrative Bioinformatics, 10(2), 94-102. https://doi.org/10.1515/jib-2013-223 | |
dc.relation | Mahadevan, R., & Schilling, C. H. (2003). The effects of alternate optimal solutions in constraint-based
genome-scale metabolic models. Metabolic Engineering, 5(4), 264-276.
https://doi.org/10.1016/j.ymben.2003.09.002 | |
dc.relation | MATLAB. (2021). | |
dc.relation | Mingotte, F. L. C., Jardim, C. A., Coelho, A. P., Yada, M. M., Leal, F. T., Souza, S. S., Lemos, L. B., &
Filho, D. F. (2021). Crop succession and split-application of nitrogen effects on common bean
yield in short no-tillage system. The Journal of Agricultural Science, 159(3-4), 249-257.
https://doi.org/10.1017/S0021859621000502 | |
dc.relation | Mintz-Oron, S., Meir, S., Malitsky, S., Ruppin, E., Aharoni, A., & Shlomi, T. (2012). Reconstruction of
Arabidopsis metabolic network models accounting for subcellular compartmentalization andtissue-specificity. Proceedings of the National Academy of Sciences, 109(1), 339-344.
https://doi.org/10.1073/pnas.1100358109 | |
dc.relation | Moghe, G. D., & Last, R. L. (2015). Something Old, Something New: Conserved Enzymes and the
Evolution of Novelty in Plant Specialized Metabolism1. Plant Physiology, 169(3), 1512-1523.
https://doi.org/10.1104/pp.15.00994 | |
dc.relation | Mohite, O. S., Weber, T., Kim, H. U., & Lee, S. Y. (2019). Genome-Scale Metabolic Reconstruction of
Actinomycetes for Antibiotics Production. Biotechnology Journal, 14(1), e1800377.
https://doi.org/10.1002/biot.201800377 | |
dc.relation | Moreira, T. B., Shaw, R., Luo, X., Ganguly, O., Kim, H.-S., Coelho, L. G. F., Cheung, C. Y. M., & Rhys
Williams, T. C. (2019). A Genome-Scale Metabolic Model of Soybean (Glycine max) Highlights
Metabolic Fluxes in Seedlings. Plant Physiology, 180(4), 1912-1929.
https://doi.org/10.1104/pp.19.00122 | |
dc.relation | Moretti, S., Tran, V. D. T., Mehl, F., Ibberson, M., & Pagni, M. (2021). MetaNetX/MNXref: Unified
namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic
Acids Research, 49(D1), D570-D574. https://doi.org/10.1093/nar/gkaa992 | |
dc.relation | Motta-Aldana, J. R., Serrano-Serrano, M. L., Hernández-Torres, J., Castillo-Villamizar, G., Debouck, D.
G., & Chacóns, M. I. (2010). Multiple Origins of Lima Bean Landraces in the Americas:
Evidence from Chloroplast and Nuclear DNA Polymorphisms. Crop Science, 50(5), 1773-1787.
https://doi.org/10.2135/cropsci2009.12.0706 | |
dc.relation | Nelson, D., & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. The Plant Journal,
66(1), 194-211. https://doi.org/10.1111/j.1365-313X.2011.04529.x | |
dc.relation | Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology,
28(3), 245-248. https://doi.org/10.1038/nbt.1614 | |
dc.relation | Panchy, N., Lehti-Shiu, M., & Shiu, S.-H. (2016). Evolution of Gene Duplication in Plants. Plant
Physiology, 171(4), 2294-2316. https://doi.org/10.1104/pp.16.00523 | |
dc.relation | Pfau, T., Christian, N., Masakapalli, S. K., Sweetlove, L. J., Poolman, M. G., & Ebenhöh, O. (2018). Theintertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling.
Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-30884-x | |
dc.relation | Poolman, M. G., Kundu, S., Shaw, R., & Fell, D. A. (2013). Responses to Light Intensity in a
Genome-Scale Model of Rice Metabolism. Plant Physiology, 162(2), 1060-1072.
https://doi.org/10.1104/pp.113.216762 | |
dc.relation | Poolman, M. G., Miguet, L., Sweetlove, L. J., & Fell, D. A. (2009). A Genome-Scale Metabolic Model of
Arabidopsis and Some of Its Properties. Plant Physiology, 151(3), 1570-1581.
https://doi.org/10.1104/pp.109.141267 | |
dc.relation | Poulton, J. E. (1990). Cyanogenesis in Plants 1. Plant Physiology, 94(2), 401-405. | |
dc.relation | R: The R Stats Package. (s. f.). Recuperado 4 de abril de 2023, de
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html | |
dc.relation | Radin, J. W. (1972). Cyanogenesis in Green Tissues of Cotton Plants1. Crop Science, 12(5), 609-611.
https://doi.org/10.2135/cropsci1972.0011183X001200050017x | |
dc.relation | Reichhuber, S. (2019, agosto 14). Should I worry about the cyanide in lima beans? [Featured question].
Extension Communications; Oregon State University Extension Service.
https://extension.oregonstate.edu/ask-expert/featured/should-i-worry-about-cyanide-lima-beans | |
dc.relation | Rizk, A. (1990, noviembre 20). Poisonous Plant Contamination of Edible Plants.
https://www.semanticscholar.org/paper/Poisonous-Plant-Contamination-of-Edible-Plants-Rizk/a9
c969f3a4298249e7b77f358fd3b4ab54966e14 | |
dc.relation | Saha, R., Suthers, P. F., & Maranas, C. D. (2011). Zea mays iRS1563: A Comprehensive Genome-Scale
Metabolic Reconstruction of Maize Metabolism. PLOS ONE, 6(7), e21784.
https://doi.org/10.1371/journal.pone.0021784 | |
dc.relation | Salem, M. A., Serag, A., El-Seedi, H. R., Hamdan, D. I., Ezzat, S. M., & Zayed, A. (2021).
23 Identification and analysis of toxic phytochemicals. En A. G. Mtewa & C. Egbuna (Eds.),
Phytochemistry, the Military and Health (pp. 443-479). Elsevier.
https://doi.org/10.1016/B978-0-12-821556-2.00015-3 | |
dc.relation | Sarkar, D., & Maranas, C. D. (2020). SNPeffect: Identifying functional roles of SNPs using metabolic
networks. The Plant Journal, 103(2), 512-531. https://doi.org/10.1111/tpj.14746 | |
dc.relation | Seaver, S. M. D., Bradbury, L. M. T., Frelin, O., Zarecki, R., Ruppin, E., Hanson, A. D., & Henry, C. S.
(2015). Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and
endosperm. Frontiers in Plant Science, 6.
https://www.frontiersin.org/articles/10.3389/fpls.2015.00142 | |
dc.relation | Shaw, R., & Cheung, C. Y. M. (2018). A Dynamic Multi-Tissue Flux Balance Model Captures Carbon
and Nitrogen Metabolism and Optimal Resource Partitioning During Arabidopsis Growth.
Frontiers in Plant Science, 9. https://www.frontiersin.org/articles/10.3389/fpls.2018.00884 | |
dc.relation | Simons, M., Saha, R., Amiour, N., Kumar, A., Guillard, L., Clément, G., Miquel, M., Li, Z., Mouille, G.,
Lea, P. J., Hirel, B., & Maranas, C. D. (2014). Assessing the Metabolic Impact of Nitrogen
Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. Plant Physiology,
166(3), 1659-1674. https://doi.org/10.1104/pp.114.245787 | |
dc.relation | Sokal, R. R., & Michener, C. D. (1975). A statistical method for evaluating systematic relationships.
Multivariate statistical methods, Multivariate statistical methods, among-groups covariation,
269. | |
dc.relation | Temegne, N. C., Tsoata, E., Emmanuel Ngome, A. F., Tonfack, L. B., Agendia, A. P., & Youmbi, E.
(2021). Chapter 7 Lima bean. En A. Pratap & S. Gupta (Eds.), The Beans and the Peas (pp.
133-152). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821450-3.00001-9 | |
dc.relation | Thiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nature Protocols, 5(1), Article 1. https://doi.org/10.1038/nprot.2009.203 | |
dc.relation | Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H.-J., Martín-Cabrejas, M. A., &
Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food
Legumes. Critical Reviews in Plant Sciences, 34(1-3), 105-143.
https://doi.org/10.1080/07352689.2014.897907 | |
dc.relation | Verbelen, J. P., & De Greef, J. A. (1979). LEAF DEVELOPMENT OF PHASEOLUS VULGARIS L. INLIGHT AND IN DARKNESS. American Journal of Botany, 66(8), 970-976.
https://doi.org/10.1002/j.1537-2197.1979.tb06308.x | |
dc.relation | Vlasova, A., Capella-Gutiérrez, S., Rendón-Anaya, M., Hernández-Oñate, M., Minoche, A. E., Erb, I.,
Câmara, F., Prieto-Barja, P., Corvelo, A., Sanseverino, W., Westergaard, G., Dohm, J. C., Pappas,
G. J., Saburido-Alvarez, S., Kedra, D., Gonzalez, I., Cozzuto, L., Gómez-Garrido, J.,
Aguilar-Morón, M. A., ... Guigó, R. (2016). Genome and transcriptome analysis of the
Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal
specialization of genes. Genome Biology, 17(1), 32. https://doi.org/10.1186/s13059-016-0883-6 | |
dc.relation | Wang, H., Marcisauskas, S., Sánchez, B. J., Domenzain, I., Hermansson, D., Agren, R., Nielsen, J., &
Kerkhoven, E. J. (2018). RAVEN 2.0: A versatile toolbox for metabolic network reconstruction
and a case study on Streptomyces coelicolor. PLOS Computational Biology, 14(10), e1006541.
https://doi.org/10.1371/journal.pcbi.1006541 | |
dc.relation | Wang, W., Feng, B., Xiao, J., Xia, Z., Zhou, X., Li, P., Zhang, W., Wang, Y., Møller, B. L., Zhang, P., Luo,
M.-C., Xiao, G., Liu, J., Yang, J., Chen, S., Rabinowicz, P. D., Chen, X., Zhang, H.-B., Ceballos,
H., ... Peng, M. (2014). Cassava genome from a wild ancestor to cultivated varieties. Nature
Communications, 5(1), Article 1. https://doi.org/10.1038/ncomms6110 | |
dc.relation | Wei, J.-N., Zhu, J., & Kang, L. (2006). Volatiles released from bean plants in response to agromyzid flies.
Planta, 224(2), 279-287. https://doi.org/10.1007/s00425-005-0212-x | |
dc.relation | Yuan, H., Cheung, C. Y. M., Poolman, M. G., Hilbers, P. A. J., & van Riel, N. A. W. (2016). A
genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its
application to photorespiratory metabolism. The Plant Journal, 85(2), 289-304.
https://doi.org/10.1111/tpj.13075 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Genome-Scale Metabolic Reconstruction of the Phaseolus Genus: Insights into Cyanogenesis Metabolism | |
dc.type | Trabajo de grado - Maestría | |