dc.contributorDuitama Castellanos, Jorge Alexander
dc.contributorGonzález Barrios, Andrés Fernando
dc.contributorChacón Sánchez, María Isabel
dc.contributorGrupo de Diseño de Productos y Procesos (GDPP)
dc.contributorTICSw
dc.creatorDuarte Torres, Erick Nicolas
dc.date.accessioned2023-07-05T15:15:26Z
dc.date.accessioned2023-09-07T02:19:47Z
dc.date.available2023-07-05T15:15:26Z
dc.date.available2023-09-07T02:19:47Z
dc.date.created2023-07-05T15:15:26Z
dc.date.issued2023-06-06
dc.identifierhttp://hdl.handle.net/1992/68132
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729171
dc.description.abstractIn this research, we present the first metabolic reconstruction of the Phaseolus genus, based on Phaseolus vulgaris metabolic data and incorporating cyanogenesis pathways from Phaseolus lunatus. Our model successfully simulates the plant cell metabolism under photoperiod conditions, making it a valuable tool for studying the metabolims of Phaseolus species. Additionally, we conducted a genomic comparison analysis between the two Phaseolus species to gather data for imposing contrainsts, enabling the simulation of linamarin and lotaustralin biosynthesis, both cyanogenic compounds. By studiyng these pathways, we gained insights into the genomic elements and metabolic mechanism responsible for the high production of linamarin in P. lunatus. In addition, we conducted an optimization analyses to identify metabolic differences that could explain the observed overproduction of linamarin compared to lotaustralin in P. lunatus.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Biología Computacional
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAkunne (formerly Okoye), T., Uzor, P., Onyeto, C., & Okereke, E. (2014). Safe African Medicinal Plants for Clinical Studies. En Toxicological Survey of African Medicinal Plants (pp. 535-555). https://doi.org/10.1016/B978-0-12-800018-2.00018-2https://doi.org/10.1111/tpj.13075
dc.relationAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
dc.relationAndersen, M. D., Busk, P. K., Svendsen, I., & Møller, B. L. (2000). Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. The Journal of Biological Chemistry, 275(3), 1966-1975. https://doi.org/10.1074/jbc.275.3.1966
dc.relationBallhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature. PLOS ONE, 4(5), e5450. https://doi.org/10.1371/journal.pone.0005450
dc.relationBaudoin, J.-P. (1975, junio). Lima bean breeding program. https://cgspace.cgiar.org/handle/10568/98189
dc.relationBecker, S. A., & Palsson, B. Ø. (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: An initial draft to the two-dimensional annotation. BMC Microbiology, 5(1), 8. https://doi.org/10.1186/1471-2180-5-8
dc.relationBekaert, M., Edger, P. P., Hudson, C. M., Pires, J. C., & Conant, G. C. (2012). Metabolic and evolutionary costs of herbivory defense: Systems biology of glucosinolate synthesis. New Phytologist, 196(2), 596-605. https://doi.org/10.1111/j.1469-8137.2012.04302.x
dc.relationBernstein, D. B., Sulheim, S., Almaas, E., & Segrè, D. (2021). Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biology, 22(1), 64. https://doi.org/10.1186/s13059-021-02289-z
dc.relationBitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8. https://www.frontiersin.org/articles/10.3389/fpls.2017.00722
dc.relationBogart, E., & Myers, C. R. (2016). Multiscale Metabolic Modeling of C4 Plants: Connecting Nonlinear Genome-Scale Models to Leaf-Scale Metabolism in Developing Maize Leaves. PLOS ONE, 11(3), e0151722. https://doi.org/10.1371/journal.pone.0151722
dc.relationBotero, K., Restrepo, S., & Pinzón, A. (2018a). A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics, 19(8), 863. https://doi.org/10.1186/s12864-018-5192-x
dc.relationBotero, K., Restrepo, S., & Pinzón, A. (2018b). A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism. BMC Genomics, 19(8), 863. https://doi.org/10.1186/s12864-018-5192-x
dc.relationBroughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252(1), 55-128. https://doi.org/10.1023/A:1024146710611
dc.relationCharif, D., & Lobry, J. R. (2007). SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. En U. Bastolla, M. Porto, H. E. Roman, & M. Vendruscolo (Eds.), Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (pp. 207-232). Springer. https://doi.org/10.1007/978-3-540-35306-5_10
dc.relationChatterjee, A., Huma, B., Shaw, R., & Kundu, S. (2017). Reconstruction of Oryza sativa indica Genome Scale Metabolic Model and Its Responses to Varying RuBisCO Activity, Light Intensity, and Enzymatic Cost Conditions. Frontiers in Plant Science, 8. https://www.frontiersin.org/articles/10.3389/fpls.2017.02060
dc.relationChatterjee, A., & Kundu, S. (2015). Revisiting the chlorophyll biosynthesis pathway using genome scale metabolic model of Oryza sativa japonica. Scientific Reports, 5(1), Article 1. https://doi.org/10.1038/srep14975
dc.relationCheung, C. Y. M., Poolman, M. G., Fell, David. A., Ratcliffe, R. G., & Sweetlove, L. J. (2014). A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves. Plant Physiology, 165(2), 917-929. https://doi.org/10.1104/pp.113.234468
dc.relationde Oliveira Dal'Molin, C. G., Orellana, C., Gebbie, L., Steen, J., Hodson, M. P., Chrysanthopoulos, P., Plan, M. R., McQualter, R., Palfreyman, R. W., & Nielsen, L. K. (2016). Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses. Frontiers in Plant Science, 7. https://www.frontiersin.org/articles/10.3389/fpls.2016.01138
dc.relationde Oliveira Dal'Molin, C. G., Quek, L.-E., Palfreyman, R. W., Brumbley, S. M., & Nielsen, L. K. (2010a). C4GEM, a Genome-Scale Metabolic Model to Study C4 Plant Metabolism. Plant Physiology, 154(4), 1871-1885. https://doi.org/10.1104/pp.110.166488
dc.relationEbrahim, A., Lerman, J. A., Palsson, B. O., & Hyduke, D. R. (2013). COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 7(1), 74. https://doi.org/10.1186/1752-0509-7-74
dc.relationEdger, P. P., Heidel-Fischer, H. M., Bekaert, M., Rota, J., Glöckner, G., Platts, A. E., Heckel, D. G., Der, J. P., Wafula, E. K., Tang, M., Hofberger, J. A., Smithson, A., Hall, J. C., Blanchette, M., Bureau, T. E., Wright, S. I., dePamphilis, C. W., Eric Schranz, M., Barker, M. S., ... Wheat, C. W. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 112(27), 8362-8366. https://doi.org/10.1073/pnas.1503926112
dc.relationFAO. (2018). Legumbres. Pequeñas semillas, grandes soluciones. 292.
dc.relationForslund, K., Morant, M., Jørgensen, B., Olsen, C. E., Asamizu, E., Sato, S., Tabata, S., & Bak, S. (2004).Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiology, 135(1), 71-84. https://doi.org/10.1104/pp.103.038059
dc.relationGarcia, T., Duitama, J., Zullo, S. S., Gil, J., Ariani, A., Dohle, S., Palkovic, A., Skeen, P., Bermudez-Santana, C. I., Debouck, D. G., Martínez-Castillo, J., Gepts, P., & Chacón-Sánchez, M. I. (2021). Comprehensive genomic resources related to domestication and crop improvement traits in Lima bean. Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-021-20921-1
dc.relationGerlin, L., Frainay, C., Jourdan, F., Baroukh, C., & Prigent, S. (2021). Chapter Eight-Plant genome-scale metabolic networks. En P. Pétriacq & A. Bouchereau (Eds.), Advances in Botanical Research (Vol. 98, pp. 237-270). Academic Press. https://doi.org/10.1016/bs.abr.2020.09.021
dc.relationGioia, T., Logozzo, G., Marzario, S., Zeuli, P. S., & Gepts, P. (2019). Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLOS ONE, 14(1), e0211342. https://doi.org/10.1371/journal.pone.0211342
dc.relationGoodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186. https://doi.org/10.1093/nar/gkr944
dc.relationGudmundsson, S., & Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics, 11(1), 489. https://doi.org/10.1186/1471-2105-11-489
dc.relationGutiérrez Salgado, A., Gepts, P., & Debouck, D. G. (1995). Evidence for two gene pools of the Lima bean,Phaseolus lunatus L., in the Americas. Genetic Resources and Crop Evolution, 42(1), 15-28. https://doi.org/10.1007/BF02310680
dc.relationKanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1),D587-D592. https://doi.org/10.1093/nar/gkac963
dc.relationKarp, P. D., Midford, P. E., Billington, R., Kothari, A., Krummenacker, M., Latendresse, M., Ong, W. K., Subhraveti, P., Caspi, R., Fulcher, C., Keseler, I. M., & Paley, S. M. (2021). Pathway Tools version 23.0 update: Software for pathway/genome informatics and systems biology. Briefings in Bioinformatics, 22(1), 109-126. https://doi.org/10.1093/bib/bbz104
dc.relationLai, D., Maimann, A. B., Macea, E., Ocampo, C. H., Cardona, G., Picmanová, M., Darbani, B., Olsen, C. E., Debouck, D., Raatz, B., Møller, B. L., & Rook, F. (2020). Biosynthesis of cyanogenic glucosides in Phaseolus lunatus and the evolution of oxime-based defenses. Plant Direct, 4(8), e00244. https://doi.org/10.1002/pld3.244
dc.relationLakshmanan, M., Lim, S.-H., Mohanty, B., Kim, J. K., Ha, S.-H., & Lee, D.-Y. (2015). Unraveling the Light-Specific Metabolic and Regulatory Signatures of Rice through Combined in Silico Modeling and Multiomics Analysis. Plant Physiology, 169(4), 3002-3020. https://doi.org/10.1104/pp.15.01379
dc.relationLiu, L., Mei, Q., Yu, Z., Sun, T., Zhang, Z., & Chen, M. (2013). An Integrative Bioinformatics Framework for Genome-scale Multiple Level Network Reconstruction of Rice. Journal of Integrative Bioinformatics, 10(2), 94-102. https://doi.org/10.1515/jib-2013-223
dc.relationMahadevan, R., & Schilling, C. H. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering, 5(4), 264-276. https://doi.org/10.1016/j.ymben.2003.09.002
dc.relationMATLAB. (2021).
dc.relationMingotte, F. L. C., Jardim, C. A., Coelho, A. P., Yada, M. M., Leal, F. T., Souza, S. S., Lemos, L. B., & Filho, D. F. (2021). Crop succession and split-application of nitrogen effects on common bean yield in short no-tillage system. The Journal of Agricultural Science, 159(3-4), 249-257. https://doi.org/10.1017/S0021859621000502
dc.relationMintz-Oron, S., Meir, S., Malitsky, S., Ruppin, E., Aharoni, A., & Shlomi, T. (2012). Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization andtissue-specificity. Proceedings of the National Academy of Sciences, 109(1), 339-344. https://doi.org/10.1073/pnas.1100358109
dc.relationMoghe, G. D., & Last, R. L. (2015). Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism1. Plant Physiology, 169(3), 1512-1523. https://doi.org/10.1104/pp.15.00994
dc.relationMohite, O. S., Weber, T., Kim, H. U., & Lee, S. Y. (2019). Genome-Scale Metabolic Reconstruction of Actinomycetes for Antibiotics Production. Biotechnology Journal, 14(1), e1800377. https://doi.org/10.1002/biot.201800377
dc.relationMoreira, T. B., Shaw, R., Luo, X., Ganguly, O., Kim, H.-S., Coelho, L. G. F., Cheung, C. Y. M., & Rhys Williams, T. C. (2019). A Genome-Scale Metabolic Model of Soybean (Glycine max) Highlights Metabolic Fluxes in Seedlings. Plant Physiology, 180(4), 1912-1929. https://doi.org/10.1104/pp.19.00122
dc.relationMoretti, S., Tran, V. D. T., Mehl, F., Ibberson, M., & Pagni, M. (2021). MetaNetX/MNXref: Unified namespace for metabolites and biochemical reactions in the context of metabolic models. Nucleic Acids Research, 49(D1), D570-D574. https://doi.org/10.1093/nar/gkaa992
dc.relationMotta-Aldana, J. R., Serrano-Serrano, M. L., Hernández-Torres, J., Castillo-Villamizar, G., Debouck, D. G., & Chacóns, M. I. (2010). Multiple Origins of Lima Bean Landraces in the Americas: Evidence from Chloroplast and Nuclear DNA Polymorphisms. Crop Science, 50(5), 1773-1787. https://doi.org/10.2135/cropsci2009.12.0706
dc.relationNelson, D., & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. The Plant Journal, 66(1), 194-211. https://doi.org/10.1111/j.1365-313X.2011.04529.x
dc.relationOrth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245-248. https://doi.org/10.1038/nbt.1614
dc.relationPanchy, N., Lehti-Shiu, M., & Shiu, S.-H. (2016). Evolution of Gene Duplication in Plants. Plant Physiology, 171(4), 2294-2316. https://doi.org/10.1104/pp.16.00523
dc.relationPfau, T., Christian, N., Masakapalli, S. K., Sweetlove, L. J., Poolman, M. G., & Ebenhöh, O. (2018). Theintertwined metabolism during symbiotic nitrogen fixation elucidated by metabolic modelling. Scientific Reports, 8(1), Article 1. https://doi.org/10.1038/s41598-018-30884-x
dc.relationPoolman, M. G., Kundu, S., Shaw, R., & Fell, D. A. (2013). Responses to Light Intensity in a Genome-Scale Model of Rice Metabolism. Plant Physiology, 162(2), 1060-1072. https://doi.org/10.1104/pp.113.216762
dc.relationPoolman, M. G., Miguet, L., Sweetlove, L. J., & Fell, D. A. (2009). A Genome-Scale Metabolic Model of Arabidopsis and Some of Its Properties. Plant Physiology, 151(3), 1570-1581. https://doi.org/10.1104/pp.109.141267
dc.relationPoulton, J. E. (1990). Cyanogenesis in Plants 1. Plant Physiology, 94(2), 401-405.
dc.relationR: The R Stats Package. (s. f.). Recuperado 4 de abril de 2023, de https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
dc.relationRadin, J. W. (1972). Cyanogenesis in Green Tissues of Cotton Plants1. Crop Science, 12(5), 609-611. https://doi.org/10.2135/cropsci1972.0011183X001200050017x
dc.relationReichhuber, S. (2019, agosto 14). Should I worry about the cyanide in lima beans? [Featured question]. Extension Communications; Oregon State University Extension Service. https://extension.oregonstate.edu/ask-expert/featured/should-i-worry-about-cyanide-lima-beans
dc.relationRizk, A. (1990, noviembre 20). Poisonous Plant Contamination of Edible Plants. https://www.semanticscholar.org/paper/Poisonous-Plant-Contamination-of-Edible-Plants-Rizk/a9 c969f3a4298249e7b77f358fd3b4ab54966e14
dc.relationSaha, R., Suthers, P. F., & Maranas, C. D. (2011). Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism. PLOS ONE, 6(7), e21784. https://doi.org/10.1371/journal.pone.0021784
dc.relationSalem, M. A., Serag, A., El-Seedi, H. R., Hamdan, D. I., Ezzat, S. M., & Zayed, A. (2021). 23 Identification and analysis of toxic phytochemicals. En A. G. Mtewa & C. Egbuna (Eds.), Phytochemistry, the Military and Health (pp. 443-479). Elsevier. https://doi.org/10.1016/B978-0-12-821556-2.00015-3
dc.relationSarkar, D., & Maranas, C. D. (2020). SNPeffect: Identifying functional roles of SNPs using metabolic networks. The Plant Journal, 103(2), 512-531. https://doi.org/10.1111/tpj.14746
dc.relationSeaver, S. M. D., Bradbury, L. M. T., Frelin, O., Zarecki, R., Ruppin, E., Hanson, A. D., & Henry, C. S. (2015). Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. Frontiers in Plant Science, 6. https://www.frontiersin.org/articles/10.3389/fpls.2015.00142
dc.relationShaw, R., & Cheung, C. Y. M. (2018). A Dynamic Multi-Tissue Flux Balance Model Captures Carbon and Nitrogen Metabolism and Optimal Resource Partitioning During Arabidopsis Growth. Frontiers in Plant Science, 9. https://www.frontiersin.org/articles/10.3389/fpls.2018.00884
dc.relationSimons, M., Saha, R., Amiour, N., Kumar, A., Guillard, L., Clément, G., Miquel, M., Li, Z., Mouille, G., Lea, P. J., Hirel, B., & Maranas, C. D. (2014). Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. Plant Physiology, 166(3), 1659-1674. https://doi.org/10.1104/pp.114.245787
dc.relationSokal, R. R., & Michener, C. D. (1975). A statistical method for evaluating systematic relationships. Multivariate statistical methods, Multivariate statistical methods, among-groups covariation, 269.
dc.relationTemegne, N. C., Tsoata, E., Emmanuel Ngome, A. F., Tonfack, L. B., Agendia, A. P., & Youmbi, E. (2021). Chapter 7 Lima bean. En A. Pratap & S. Gupta (Eds.), The Beans and the Peas (pp. 133-152). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821450-3.00001-9
dc.relationThiele, I., & Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 5(1), Article 1. https://doi.org/10.1038/nprot.2009.203
dc.relationVaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H.-J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34(1-3), 105-143. https://doi.org/10.1080/07352689.2014.897907
dc.relationVerbelen, J. P., & De Greef, J. A. (1979). LEAF DEVELOPMENT OF PHASEOLUS VULGARIS L. INLIGHT AND IN DARKNESS. American Journal of Botany, 66(8), 970-976. https://doi.org/10.1002/j.1537-2197.1979.tb06308.x
dc.relationVlasova, A., Capella-Gutiérrez, S., Rendón-Anaya, M., Hernández-Oñate, M., Minoche, A. E., Erb, I., Câmara, F., Prieto-Barja, P., Corvelo, A., Sanseverino, W., Westergaard, G., Dohm, J. C., Pappas, G. J., Saburido-Alvarez, S., Kedra, D., Gonzalez, I., Cozzuto, L., Gómez-Garrido, J., Aguilar-Morón, M. A., ... Guigó, R. (2016). Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology, 17(1), 32. https://doi.org/10.1186/s13059-016-0883-6
dc.relationWang, H., Marcisauskas, S., Sánchez, B. J., Domenzain, I., Hermansson, D., Agren, R., Nielsen, J., & Kerkhoven, E. J. (2018). RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLOS Computational Biology, 14(10), e1006541. https://doi.org/10.1371/journal.pcbi.1006541
dc.relationWang, W., Feng, B., Xiao, J., Xia, Z., Zhou, X., Li, P., Zhang, W., Wang, Y., Møller, B. L., Zhang, P., Luo, M.-C., Xiao, G., Liu, J., Yang, J., Chen, S., Rabinowicz, P. D., Chen, X., Zhang, H.-B., Ceballos, H., ... Peng, M. (2014). Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 5(1), Article 1. https://doi.org/10.1038/ncomms6110
dc.relationWei, J.-N., Zhu, J., & Kang, L. (2006). Volatiles released from bean plants in response to agromyzid flies. Planta, 224(2), 279-287. https://doi.org/10.1007/s00425-005-0212-x
dc.relationYuan, H., Cheung, C. Y. M., Poolman, M. G., Hilbers, P. A. J., & van Riel, N. A. W. (2016). A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. The Plant Journal, 85(2), 289-304. https://doi.org/10.1111/tpj.13075
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleGenome-Scale Metabolic Reconstruction of the Phaseolus Genus: Insights into Cyanogenesis Metabolism
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución