dc.contributorOcampo Rincón, David
dc.contributorCadena Ordóñez, Carlos Daniel
dc.contributorBiología Evolutiva de Vertebrados (EVOLVERT)
dc.creatorMendiwelso Moreno, Maria Elisa
dc.date.accessioned2023-08-08T19:24:58Z
dc.date.accessioned2023-09-07T02:16:53Z
dc.date.available2023-08-08T19:24:58Z
dc.date.available2023-09-07T02:16:53Z
dc.date.created2023-08-08T19:24:58Z
dc.date.issued2023-08-04
dc.identifierhttp://hdl.handle.net/1992/69438
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729125
dc.description.abstractUnderstanding how selection pressures operate at different evolutionary scales to promote diversity in various species' traits and phenotypes has long intrigued evolutionary biologists. In recent years, efforts have been made to comprehend the function of UV reflectance in avian eggs, leading to the proposal of different hypotheses. Among the most extensively studied are the UV resistance hypothesis and the egg detectability hypothesis, both of which we investigated in this study to determine to which one may explain patterns in UV reflectance and to evaluate the driving forces associated with such variation. This study is the first to take a large-scale macroecological view of eggshell UV coloration in novel data collected for over 500 avian species and analyzed using phylogenetic comparative methods. We identified the importance of brightness and the exposure of the nest in relation to the UV chroma reflected by the egg. Likewise, although we did not observe a statistically significant effect of nest type on UV reflectance, we did find patterns that, taking into account the mean UV reflectance measurements and character mapping, reveal greater support for the UV resistance hypothesis in Passeriformes and Charadriiformes, which could suggest future research. Overall, this research contributes to a deeper understanding of the mechanisms driving UV coloration in avian eggs and sheds light on the complex interplay between selection pressures and the evolution of species' traits.
dc.description.abstractEntender cómo operan las presiones de selección a diferentes escalas evolutivas para promover la diversidad en los rasgos y fenotipos de diversas especies ha intrigado durante mucho tiempo a los biólogos evolutivos. En los últimos años, se han hecho esfuerzos para comprender la función de la reflectancia UV en los huevos de las aves, lo que ha llevado a proponer diferentes hipótesis. Entre las más ampliamente estudiadas se encuentran la hipótesis de la resistencia a los rayos UV y la hipótesis de la detectabilidad del huevo, las cuales investigamos en este estudio para determinar cuál de ellas podría explicar patrones en la reflectancia UV y evaluar las fuerzas impulsoras asociadas a dicha variación. Este estudio es el primero que adopta una visión macroecológica a gran escala sobre la coloración UV de la cáscara de los huevos usando datos nuevos de más de 500 especies de aves analizados con métodos filogenéticos comparativos. Identificamos la importancia del brillo y la exposición del nido en relación con el croma UV reflejado por el huevo. Asimismo, aunque no observamos un efecto estadísticamente significativo del tipo de nido sobre la reflectancia UV, si observamos patrones que, tomando en cuenta la media de las medidas de la reflectancia UV y el mapeo de caracteres, indican que hay un mayor apoyo a la hipótesis de la resistencia UV, particularmente en Passeriformes y Charadriiformes, lo que abre la puerta para futuras investigaciones. En general, esta investigación contribuye a una comprensión más profunda de los mecanismos que impulsan la coloración UV en los huevos de las aves y arroja luz sobre la compleja interacción entre las presiones de selección y la evolución de los rasgos de las especies.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherBiología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationCherry, M. I., & Bennett, T. D. (2001). Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1467), 565-571. https://doi.org/10.1098/rspb.2000.1414
dc.relationPrice-Waldman, R., & Stoddard, M. C. (2021). Avian Coloration Genetics: Recent Advances and Emerging Questions. Journal of Heredity, 112(5), 395-416. https://doi.org/10.1093/jhered/esab015
dc.relationRiehl, C. (2011). Paternal investment and the "sexually selected hypothesis" for the evolution of eggshell coloration: Revisiting the assumptions. Auk, 128(1), 175-179. https://doi.org/10.1525/auk.2011.10171
dc.relationJagannath, A., Shore, R. F., Walker, L. A., Ferns, P. N., & Gosler, A. G. (2008). Eggshell pigmentation indicates pesticide contamination. Journal of Applied Ecology, 45(1), 133-140. https://doi.org/10.1111/j.1365-2664.2007.01386.x
dc.relationOrlowski, G., Niedzielski, P., Merta, D., Pokorny, P., & Proch, J. (2020). Quantifying the functional disparity in pigment spot-background egg colour ICP-OES-based eggshell ionome at two extremes of avian embryonic development. Scientific Reports, 10(1), 1-15. https://doi.org/10.1038/s41598-020-79040-4
dc.relationHanley, D., Cassey, P., & Doucet, S. M. (2013). Parents, predators, parasites, and the evolution of eggshell colour in open nesting birds. Evolutionary Ecology, 27(3), 593-617. https://doi.org/10.1007/s10682-012-9619-6
dc.relationDainson, M., Hauber, M. E., López, A. V., Grim, T., & Hanley, D. (2017). Does contrast between eggshell ground and spot coloration affect egg rejection?. The Science of Nature, 104, 1-9. https://doi.org/10.1007/s00114-017-1476-2
dc.relationYang, C., Wang, J., and Liang, W. (2016). Blocking of ultraviolet reflectance on bird eggs reduces nest predation by aerial predators. Journal of Ornithology, 157: 43-47. https://doi.org/10.1007/s10336-015-1243-0
dc.relationHonza, M., Polaciková, L., & Procházka, P. (2007). Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biological Journal of the Linnean Society, 92(2), 269-276. https://doi.org/10.1111/j.1095-8312.2007.00848.x
dc.relationLahti, D. C., & Ardia, D. R. (2016). Shedding light on bird egg color: Pigment as parasol and the dark car effect. The American Naturalist, 187(5), 547-563. https://doi.org/10.1086/685780
dc.relationMayani-Parás, F., Kilner, R. M., Stoddard, M. C., Rodríguez, C., & Drummond, H. (2015). Behaviorally induced camouflage: a new mechanism of avian egg protection. The American Naturalist, 186(4), E91-E97. https://doi.org/10.1086/682579
dc.relationHanley, D., Doucet, S. M., & Dearborn, D. C. (2010). A blackmail hypothesis for the evolution of conspicuous egg coloration in birds. The Auk, 127(2), 453-459. https://doi.org/10.1525/auk.2009.09090
dc.relationSoler, J. J., Moreno, J., Aviles, j., & Moller, A. P. (2005). Blue and green egg-color intensity is associated with parental: effort and mating system in passerines: support for: the sexual selection hypothesis. Evolution, 59(3), 636-644. https://doi.org/10.1525/auk.2009.09090
dc.relationLadouce, M., Barakat, T., Su, B. L., Deparis, O., & Mouchet, S. R. (2020). Scattering of ultraviolet light by avian eggshells. Faraday Discussions, 223, 63-80. https://doi.org/10.1039/D0FD00034E
dc.relationCassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T.Lovell, G,. Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.x
dc.relationHansell, M. (2000). Bird nests and construction behaviour. Cambridge University Press.
dc.relationPaul, N. D., & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology & Evolution, 18(1), 48-55. https://doi.org/10.1016/S0169-5347(02)00014-9
dc.relationWang, J., Yang, C., Shi, H., & Liang, W. (2016). Reflectance and artificial nest experiments of reptile and bird eggs imply an adaptation of bird eggs against ultraviolet. Ecological research, 31(1), 105-110. https://doi.org/10.1007/s11284-015-1317-8
dc.relationAvilés, J. M., Soler, J. J., & Pérez-Contreras, T. (2006). Dark nests and egg colour in birds: A possible functional role of ultraviolet reflectance in egg detectability. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 2821-2829. https://doi.org/10.1098/rspb.2006.3674
dc.relationÖdeen, A., Håstad, O., & Alström, P. (2011). Evolution of ultraviolet vision in the largest avian radiation-the passerines. BMC Evolutionary Biology, 11(1), 1-8. https://doi.org/10.1186/1471-2148-11-313
dc.relationMaurer, G., Portugal, S. J., & Cassey, P. (2011). An embryo's eye view of avian eggshell pigmentation. Journal of Avian Biology, 42(6), 494-504. https://doi.org/10.1111/j.1600-048X.2011.05368.x
dc.relationClements, J. F., T. S. Schulenberg, M. J. Iliff, T. A. Fredericks, J. A. Gerbracht, D. Lepage, S. M. Billerman, B. L. Sullivan, and C. L. Wood. (2021). The eBird/Clements checklist of Birds of the World: v2021. Downloaded from https://www.birds.cornell.edu/clementschecklist/download/
dc.relationR Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.relationD'Alba, L., Torres, R., Waterhouse, G. I., Eliason, C., Hauber, M. E., & Shawkey, M. D. (2017). What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiological and Biochemical Zoology, 90(5), 588-599. https://doi.org/10.1086/693434
dc.relationMaia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10), 906-913.
dc.relationBillerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (2020). Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA.
dc.relationSimón, J. E., & Pacheco, S. (2005). On the standardization of nest descriptions of neotropical birds. Revista Brasileira de ornitologia, 13(2), 143-154.
dc.relationTobias, J. A. Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montaño-Centellas, F. A., Leandro-Silva, V., Claramunt, S,Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25, 581-597. https://doi.org/10.1111/ele.13898
dc.relationEnglert Duursma, D., Gallagher, R. V., Price, J. J., & Griffith, S. C. (2018). Variation in avian egg shape and nest structure is explained by climatic conditions. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-22436-0
dc.relationHeenan, C. B. (2013). An overview of the factors influencing the morphology and thermal properties of avian nests. Avian Biology Research, 6(2), 104-118. https://doi.org/10.3184/003685013X13614670646299
dc.relationGómez, J., Ramo, C., Stevens, M., Liñán-Cembrano, G., Rendón, M. A., Troscianko, J. T., & Amat, J. A. (2018). Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecology and Evolution, 8(16), 8019-8029. https://doi.org/10.1002/ece3.4335
dc.relationCherry, M. I., & Gosler, A. G. (2010). Avian eggshell coloration: new perspectives on adaptive explanations. Biological Journal of the Linnean Society, 100(4), 753-762. https://doi.org/10.1111/j.1095-8312.2010.01457.x
dc.relationKilner, R. M. (2006). The evolution of egg colour and patterning in birds. Biological Reviews, 81(3), 383-406. https://doi.org/10.1017/S1464793106007044
dc.relationWegrzyn, E., Leniowski, K., Rykowska, I., & Wasiak, W. (2011). Is UV and blue-green egg colouration a signal in cavity-nesting birds?. Ethology Ecology & Evolution, 23(2), 121-139. https://doi.org/10.1080/03949370.2011.554882
dc.relationMaurer, G., Portugal, S. J., Hauber, M. E., Miksík, I., Russell, D. G., & Cassey, P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Functional Ecology, 29(2), 209-218. https://doi.org/10.1111/1365-2435.12314
dc.relationSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671-675. doi:10.1038/nmeth.2089
dc.relationNagy, J., Hauber, M. E., Hartley, I. R., & Mainwaring, M. C. (2019). Correlated evolution of nest and egg characteristics in birds. Animal Behaviour, 158, 211-225. https://doi.org/10.1016/j.anbehav.2019.10.015
dc.relationStoddard, M. C., Yong, E. H., Akkaynak, D., Sheard, C., Tobias, J. A., & Mahadevan, L. (2017). Avian egg shape: Form, function, and evolution. Science, 356(6344), 1249-1254. DOI: 10.1126/science.aaj1945
dc.relationJetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444-448. https://doi.org/10.1038/nature11631
dc.relationOcampo, D., De Silva, T.N., Sheard, C., Stoddard, M.C. (2023). Evolution of nest architecture in tyrant flycatchers and allies. Philosophical Transactions B. https://doi.org/10.1098/rstb.2022.0148
dc.relationBouckaert, R., Drummond, A., Rambaut, A., Suchard, M., Vaughan, T., & Heled, Y. (2014). BEAST2: Bayesian evolutionary analysis sampling trees.
dc.relationRevell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3(2), 217-223
dc.relationRevell, L. J. (2013). Two new graphical methods for mapping trait evolution on phylogenies. Methods in Ecology and Evolution, 4(8), 754-759. https://doi.org/10.1111/2041-210X.12066
dc.relationOrme, D., Freckleton, R., Thomas, G. Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2018). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 1.0.1
dc.relationBurnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23-35. https://doi.org/10.1007/s00265-010-1029-6
dc.relationBarton, K. (2019). MuMIn: Multi-model inference. R package version 1.43.15. Retrieved from http://r-forge.r-project.org/projects/mumin/.
dc.relationBurnham, K. P., & Anderson, D. R. (2002). A practical information-theoretic approach. In Model selection and multimodel inference (2nd ed., p. 2). Springer.
dc.relationD'Alba, L., Goldenberg, J., Nallapaneni, A., Parkinson, D. Y., Zhu, C., Vanthournout, B., & Shawkey, M. D. (2021). Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. Journal of morphology, 282(7), 1066-1079. https://doi.org/10.1002/jmor.21347
dc.relationWisocki, P. A., Kennelly, P., Rojas Rivera, I., Cassey, P., Burkey, M. L., & Hanley, D. (2020). The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nature Ecology & Evolution, 4(1), 148-155. https://doi.org/10.1038/s41559-019-1003-2
dc.relationHanley, D., Grim, T., Cassey, P., & Hauber, M. E. (2015). Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biology letters, 11(5), 20150087. https://doi.org/10.1098/rsbl.2015.0087
dc.relationLee, W. S., Kwon, Y. S., & Yoo, J. C. (2010). Egg survival is related to the colour matching of eggs to nest background in Black-tailed Gulls. Journal of Ornithology, 151, 765-770. https://doi.org/10.1007/s10336-010-0508-x
dc.relationYang, C., Møller, A. P., & Liang, W. (2022). Light matters: Nest illumination alters egg rejection behavior in a cavity-nesting bird. Avian Research, 13, 100016. https://doi.org/10.1016/j.avrs.2022.100016
dc.relationMaziarz, M., & Wesolowski, T. (2014). Does darkness limit the use of tree cavities for nesting by birds?. Journal of Ornithology, 155, 793-799. https://doi.org/10.1007/s10336-014-1069-1
dc.relationMoreno, J., & Osorno, J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality?. Ecology Letters, 6(9), 803-806. https://doi.org/10.1046/j.1461-0248.2003.00505.x
dc.relationLahti, D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. The Auk, 125(4), 796-802. https://doi.org/10.1525/auk.2008.07033
dc.relationL'Herpiniere, K. L., Tims, A. R., Englert Duursma, D., & Griffith, S. C. (2021). The evolution of egg colour and patterning in Australian songbirds. Evolution, 75(12), 3132-3141. https://doi.org/10.1111/evo.14375
dc.relationGosler, A. G., Higham, J. P., & James Reynolds, S. (2005). Why are birds' eggs speckled?. Ecology Letters, 8(10), 1105-1113. https://doi.org/10.1111/j.1461-0248.2005.00816.x
dc.relationCassey, P., Thomas, G. H., Portugal, S. J., Maurer, G., Hauber, M. E., Grim, T., & Miksík, I. (2012). Why are birds' eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biological Journal of the Linnean Society, 106(3), 657-672. https://doi.org/10.1111/j.1095-8312.2012.01877.x
dc.relationYang, C., Wang, L., Hsu, Y.-C., Antonov, A., Moksnes, A., Røskaft, E., Liang, W. & Stokke, B. G. (2013) UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. The Ibis 155, 571-575. https://doi.org/10.1111/ibi.12043
dc.relationHonza, M., Capek, M., Mikulica, O., & Samas, P. (2022). Ultraviolet coloration of avian parasitic egg does not cue egg rejection in the common redstart host. Journal of Ornithology, 163(4), 903-909. https://doi.org/10.1007/s10336-022-01991-4
dc.relationEricson PG, Anderson CL, Britton T, Elzanowski A, Johansson US et al., (2006). Diversification of Neoaves: Integration of molecular sequence data and fossils. Biol. Lett. 2: 543-547. https://doi.org/10.1098/rsbl.2006.0523
dc.relationGómez, J., Pereira, A. I., Pérez-Hurtado, A., Castro, M., Ramo, C., & Amat, J. A. (2016). A trade-off between overheating and camouflage on shorebird eggshell colouration. Journal of Avian Biology, 47(3), 346-353. https://doi.org/10.1111/jav.00736
dc.relationKinoshita, S., Yoshioka, S., & Miyazaki, J. (2008). Physics of structural colors. Reports on Progress in Physics, 71(7), 076401. DOI 10.1088/0034-4885/71/7/076401
dc.relationHonza, M., Sulc, M., & Cherry, M. I. (2014). Does nest luminosity play a role in recognition of parasitic eggs in domed nests? A case study of the red bishop. Naturwissenschaften, 101, 1009-1015. https://doi.org/10.1007/s00114-014-1240-9
dc.relationXiao, H., Hu, Y., Lang, Z., Fang, B., Guo, W., Zhang, Q. I et al (2017). How much do we know about the breeding biology of bird species in the world?. Journal of Avian Biology, 48(4), 513-518. https://doi.org/10.1111/jav.00934
dc.relationWiemann, J., Yang, T. R., & Norell, M. A. (2018). Dinosaur egg colour had a single evolutionary origin. Nature, 563(7732), 555-558. https://doi.org/10.1038/s41586-018-0646-5
dc.relationMarki, P. Z., Fabre, P. H., Jønsson, K. A., Rahbek, C., Fjeldså, J., & Kennedy, J. D. (2015). Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution, 69(7), 1874-1924. https://doi.org/10.1111/evo.12695
dc.relationCarvalho, C. B., Macedo, R. H., & Graves, J. A. (2006). Breeding strategies of a socially monogamous neotropical passerine: extra-pair fertilizations, behavior, and morphology. The Condor, 108(3), 579-590. https://doi.org/10.1093/condor/108.3.579
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleThe hidden world of egg coloration: Exploring the drivers of variation in UV reflectance
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución