dc.contributorBernal Giraldo, Adriana Jimena
dc.contributorTrujillo Beltrán, César Augusto
dc.contributorBejarano Franco, Daniela
dc.contributorGaravito Aguilar, Zayra Viviana
dc.contributorLópez Carascal, Camilo Ernesto
dc.contributorLaboratorio de Interacciones Moleculares de Microorganismos Agrícolas (LIMMA)
dc.creatorRodríguez Mantilla, Carlos José
dc.date.accessioned2028-11-16
dc.date.accessioned2023-09-07T02:09:33Z
dc.date.available2028-11-16
dc.date.available2023-09-07T02:09:33Z
dc.date.created2028-11-16
dc.date.issued2023-06-06
dc.identifierhttp://hdl.handle.net/1992/69008
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8729006
dc.description.abstractEl añublo bacteriano de la yuca (CBB, por sus siglas en inglés), causado por Xanthomonas phaseoli pv. manihotis (Xpm), es la enfermedad bacteriana más importante de la yuca y afecta la producción de este cultivo en varios países tropicales en todo el mundo. Al igual que otras Xanthomonas fitopatógenas, Xpm requiere efectores tipo III (T3E) para su plena virulencia, colonización bacteriana y el desarrollo exitoso de la CBB. XopAE, un efector de la familia de proteínas externas de Xanthomonas (Xop), constituye uno de los T3E más conservados en Xpm. Este trabajo tuvo como objetivo evaluar la interacción molecular entre XopAEXpm y las patelinas MePATL3 y AtPATL3. Nuestro análisis bioinformático sugiere que MePATL3 es una proteína de tipo Sec14-GOLD PITP, y que presenta homología estructural con AtPATL3 basado en la identificación de dominios CRAL/TRIO y GOLD altamente conservados. Además, realizamos ensayos de doble híbrido de levadura (Y2H, por sus siglas en inglés) para evaluar la interacción entre XopAEXpm y MePATL3 en su extensión completa, así como entre XopAEXpm y versiones truncadas de AtPATL3, lo que nos permitió identificar la región N-terminal y/o el dominio C-terminal CRAL/TRIO de AtPATL3 como puntos críticos de interacción con XopAEXpm. Por último, realizamos ensayos de Western Blot expresando MePATL3 en N. benthamiana como un primer paso para los ensayos de Co-Inmunoprecipitación in planta.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ciencias Biológicas
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAnantharaman, V., & Aravind, L. (2002). The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biology, 3(5), research0023. https://doi.org/10.1186/gb-2002-3-5-research0023
dc.relationBaek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millán, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., ... Baker, D. (2021). Accurate prediction of protein structures and interactions using a 3-track neural network. Science (New York, N.Y.), 373(6557), 871-876. https://doi.org/10.1126/science.abj8754
dc.relationBart, R., Cohn, M., Kassen, A., McCallum, E. J., Shybut, M., Petriello, A., Krasileva, K., Dahlbeck, D., Medina, C., Alicai, T., Kumar, L., Moreira, L. M., Rodrigues Neto, J., Verdier, V., Santana, M. A., Kositcharoenkul, N., Vanderschuren, H., Gruissem, W., Bernal, A., & Staskawicz, B. J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(28), E1972-1979. https://doi.org/10.1073/pnas.1208003109
dc.relationBejarano, D., & Bernal, A. (2022). Dominios de interacción entre la proteína efectora XopAE de Xanthomonas phaseoli pv. Manihotis y la patelina 3 en Arabidopsis thaliana [Universidad de los Andes].
dc.relationBigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant, 8(4), 521-539. https://doi.org/10.1016/j.molp.2014.12.022
dc.relationBrückner, A., Polge, C., Lentze, N., Auerbach, D., & Schlattner, U. (2009). Yeast Two-Hybrid, a Powerful Tool for Systems Biology. International Journal of Molecular Sciences, 10(6), 2763-2788. https://doi.org/10.3390/ijms10062763
dc.relationBüttner, D., & He, S. Y. (2009). Type III protein secretion in plant pathogenic bacteria. Plant Physiology, 150(4). https://doi.org/10.1104/pp.109.139089
dc.relationCABI. (2021). Xanthomonas axonopodis pv. Manihotis (cassava bacterial blight). CABI Compendium, CABI Compendium, 56952. https://doi.org/10.1079/cabicompendium.56952
dc.relationCleves, A., Novick, P., & Bankaitis, V. (1989). Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. The Journal of Cell Biology, 109(6), 2939-2950.
dc.relationCockcroft, S. (1997). Phosphatidylinositol transfer proteins: Requirements in phospholipase C signaling and in regulated exocytosis. FEBS Letters, 410(1), 44-48. https://doi.org/10.1016/s0014-5793(97)00414-6
dc.relationDaniel Gietz, R., & Woods, R. A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. En C. Guthrie & G. R. Fink (Eds.), Methods in Enzymology (Vol. 350, pp. 87-96). Academic Press. https://doi.org/10.1016/S0076-6879(02)50957-5
dc.relationEdgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
dc.relationGomez, D., Restrepo, S., & Bernal, A. (2017). A small heat shock protein important in plant defense is targeted by the Xanthomonas axonopodis pv. Manihotis HpaF Effector. 33.
dc.relationGonzalez, A., & Lopez, C. E. (2008). CONSTRUCCIÓN DE UNA LIBRERÍA DE ADNc EN YUCA: UNA HERRAMIENTA PARA EL DESARROLLO BIOTECNOLÓGICO DEL CULTIVO. Acta Biológica Colombiana, 12(2), 189-202.
dc.relationGoodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186. https://doi.org/10.1093/nar/gkr944
dc.relationGrabon, A., Khan, D., & Bankaitis, V. A. (2015). Phosphatidylinositol Transfer Proteins and Instructive Regulation of Lipid Kinase Biology. Biochimica et biophysica acta, 1851(6), 724-735. https://doi.org/10.1016/j.bbalip.2014.12.011
dc.relationHollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomolecular concepts, 1(3-4), 271-283. https://doi.org/10.1515/BMC.2010.022
dc.relationHornbergs, J., Montag, K., Loschwitz, J., Mohr, I., Poschmann, G., Schnake, A., Gratz, R., Brumbarova, T., Eutebach, M., Angrand, K., Fink-Straube, C., Stühler, K., Zeier, J., Hartmann, L., Strodel, B., Ivanov, R., & Bauer, P. (2022). SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. Plant Physiology, kiac563. https://doi.org/10.1093/plphys/kiac563
dc.relationHuang, J., Ghosh, R., & Bankaitis, V. A. (2016). Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1861(9), 1352-1364. https://doi.org/10.1016/j.bbalip.2016.03.027
dc.relationHurtado-McCormick, V., Trujillo, C. A., Ocampo, J., Restrepo, S., & Bernal, A. (2018). THE IMPORTANCE OF CASSAVA PROTEINS AS PUTATIVE PATHOGENICITY TARGETS OF HpaF FROM Xanthomonas axonopodis pv. Manihotis [Universidad de los Andes].
dc.relationJones, J., & Dangl, J. (2006). The plant immune system. Nature, 444(7117), Article 7117. https://doi.org/10.1038/nature05286
dc.relationde Campos, M., & Schaaf, G. (2017). The regulation of cell polarity by lipid transfer proteins of the SEC14 family. Current Opinion in Plant Biology, 40, 158-168. https://doi.org/10.1016/j.pbi.2017.09.007
dc.relationKiba, A., Galis, I., Hojo, Y., Ohnishi, K., Yoshioka, H., & Hikichi, Y. (2014). SEC14 Phospholipid Transfer Protein Is Involved in Lipid Signaling-Mediated Plant Immune Responses in Nicotiana benthamiana. PLoS ONE, 9(5), e98150. https://doi.org/10.1371/journal.pone.0098150
dc.relationKim, J.-G., Park, B. K., Yoo, C.-H., Jeon, E., Oh, J., & Hwang, I. (2003). Characterization of the Xanthomonas axonopodis pv. Glycines Hrp pathogenicity island. Journal of Bacteriology, 185(10), 3155-3166. https://doi.org/10.1128/JB.185.10.3155-3166.2003
dc.relationKoegl, M., & Uetz, P. (2007). Improving yeast two-hybrid screening systems. Briefings in Functional Genomics, 6(4), 302-312. https://doi.org/10.1093/bfgp/elm035
dc.relationKrogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567-580. https://doi.org/10.1006/jmbi.2000.4315
dc.relationLi, X., Xie, Z., & Bankaitis, V. A. (2000). Phosphatidylinositol/phosphatidylcholine transfer proteins in yeast. Biochimica Et Biophysica Acta, 1486(1), 55-71. https://doi.org/10.1016/s1388-1981(00)00048-2
dc.relationLópez, C. E., & Bernal, A. J. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 117-126. https://doi.org/10.1007/s12042-011-9092-3
dc.relationMalinovsky, F. G., Fangel, J. U., & Willats, W. G. T. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5. https://www.frontiersin.org/articles/10.3389/fpls.2014.00178
dc.relationMeng, X., & Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 51, 245-266. https://doi.org/10.1146/annurev-phyto-082712-102314
dc.relationMontag, K., Hornbergs, J., Ivanov, R., & Bauer, P. (2020). Phylogenetic analysis of plant multi-domain SEC14-like phosphatidylinositol transfer proteins and structure-function properties of PATELLIN2. Plant Molecular Biology, 104(6), 665-678. https://doi.org/10.1007/s11103-020-01067-y
dc.relationMontagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Comprehensive Reviews in Food Science and Food Safety, 8(3), 181-194. https://doi.org/10.1111/j.1541-4337.2009.00077.x
dc.relationNecci, M., Piovesan, D., & Tosatto, S. C. E. (2021). Critical assessment of protein intrinsic disorder prediction. Nature Methods, 18(5), Article 5. https://doi.org/10.1038/s41592-021-01117-3
dc.relationNeedleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453. https://doi.org/10.1016/0022-2836(70)90057-4
dc.relationNgou, B. P. M., Ding, P., & Jones, J. D. G. (2022). Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell, 34(5), 1447-1478. https://doi.org/10.1093/plcell/koac041
dc.relationPeiro, A., Izquierdo-García, A. C., Sanchez-Navarro, J. A., Pallas, V., Mulet, J. M., & Aparicio, F. (2014). Patellins 3 and 6, two members of the Plant Patellin family, interact with the movement protein of Alfalfa mosaic virus and interfere with viral movement. Molecular Plant Pathology, 15(9), 881-891. https://doi.org/10.1111/mpp.12146
dc.relationPeterman, T. K., Ohol, Y. M., McReynolds, L. J., & Luna, E. J. (2004). Patellin1, a Novel Sec14-Like Protein, Localizes to the Cell Plate and Binds Phosphoinositides. Plant Physiology, 136(2), 3080-3094. https://doi.org/10.1104/pp.104.045369
dc.relationRajagopala, S. V., & Uetz, P. (2009). Analysis of protein-protein interactions using array-based yeast two-hybrid screens. Methods in Molecular Biology (Clifton, N.J.), 548, 223-245. https://doi.org/10.1007/978-1-59745-540-4_13
dc.relationRathjen, J. P., Chang, J. H., Staskawicz, B. J., & Michelmore, R. W. (1999). Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto. The EMBO Journal, 18(12), 3232-3240. https://doi.org/10.1093/emboj/18.12.3232
dc.relationRutter, B. D., & Innes, R. W. (2017). Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiology, 173(1), 728-741. https://doi.org/10.1104/pp.16.01253
dc.relationSchrödinger, L., & DeLano, W. (2023). The PyMOL Molecular Graphics System, Version 2.5. http://www.pymol.org/pymol
dc.relationSchulze, S., Kay, S., Büttner, D., Egler, M., Eschen-Lippold, L., Hause, G., Krüger, A., Lee, J., Müller, O., Scheel, D., Szczesny, R., Thieme, F., & Bonas, U. (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. The New Phytologist, 195(4), 894-911. https://doi.org/10.1111/j.1469-8137.2012.04210.x
dc.relationSha, B., Phillips, S., Bankaitis, V., & Luo, M. (1998). Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein-PubMed. Nature, 391(6666), 5. https://doi.org/DOI: 10.1038/35179
dc.relationSuzuki, T., Matsushima, C., Nishimura, S., Higashiyama, T., Sasabe, M., & Machida, Y. (2016). Identification of Phosphoinositide-Binding Protein PATELLIN2 as a Substrate of Arabidopsis MPK4 MAP Kinase during Septum Formation in Cytokinesis. Plant and Cell Physiology, 57(8), 1744-1755. https://doi.org/10.1093/pcp/pcw098
dc.relationTAIR. (2011). Modelo Genético: AT1G72160(PATL3). The Arabidopsis Information Resource (TAIR). https://www.arabidopsis.org/servlets/TairObject?name=AT1G72160&type=locus
dc.relationTaylor, N. J., Fauquet, C. M., & Tohme, J. (2012). Overview of Cassava Special Issue. Tropical Plant Biology, 5(1), 1-3. https://doi.org/10.1007/s12042-012-9098-5
dc.relationTejos, R., Rodriguez-Furlan, C., Adamowski, M., Sauer, M., Norambuena, L., & Friml, J. (2017). PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science, jcs.204198. https://doi.org/10.1242/jcs.204198
dc.relationTimilsina, S., Potnis, N., Newberry, E. A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F. F., Goss, E. M., & Jones, J. B. (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18(8), 415-427. https://doi.org/10.1038/s41579-020-0361-8
dc.relationTiwari, P., Kaila, P., & Guptasarma, P. (2019). Understanding anomalous mobility of proteins on SDS-PAGE with special reference to the highly acidic extracellular domains of human E- and N-cadherins. ELECTROPHORESIS, 40(9), 1273-1281. https://doi.org/10.1002/elps.201800219
dc.relationTrujillo, C. A. (2013). Genetic structure of Xanthomonas axonopodis pv. Manihotis populations in two cassava producer regions in Colombia and characterization of an effector protein. [Unpublished doctoral dissertation]. Universidad de los Andes.
dc.relationWang, W.-M., Liu, P.-Q., Xu, Y.-J., & Xiao, S. (2016). Protein trafficking during plant innate immunity. Journal of Integrative Plant Biology, 58(4), 284-298. https://doi.org/10.1111/jipb.12426
dc.relationWang, Y., Li, X., Fan, B., Zhu, C., & Chen, Z. (2021). Regulation and Function of Defense-Related Callose Deposition in Plants. International Journal of Molecular Sciences, 22(5), 2393. https://doi.org/10.3390/ijms22052393
dc.relationWaterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
dc.relationWu, C., Tan, L., van Hooren, M., Tan, X., Liu, F., Li, Y., Zhao, Y., Li, B., Rui, Q., Munnik, T., & Bao, Y. (2017). Arabidopsis EXO70A1 recruits Patellin3 to the cell membrane independent of its role as an exocyst subunit: A subunit-specific role of EXO70A1. Journal of Integrative Plant Biology, 59(12), 851-865. https://doi.org/10.1111/jipb.12578
dc.relationXing, J., Zhang, L., Duan, Z., & Lin, J. (2021). Coordination of Phospholipid-Based Signaling and Membrane Trafficking in Plant Immunity. Trends in Plant Science, 26(4), 407-420. https://doi.org/10.1016/j.tplants.2020.11.010
dc.relationZárate-Chaves, C. A., Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021). Cassava diseases caused by Xanthomonas phaseoli pv. Manihotis and Xanthomonas cassavae. Molecular Plant Pathology. https://doi.org/10.1111/mpp.13094
dc.relationZhang, J., & Zhou, J.-M. (2010). Plant immunity triggered by microbial molecular signatures. Molecular Plant, 3(5). https://doi.org/10.1093/mp/ssq035
dc.relationZhang, W., He, S. Y., & Assmann, S. M. (2008). The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. The Plant Journal: For Cell and Molecular Biology, 56(6), 984-996. https://doi.org/10.1111/j.1365-313X.2008.03657.x
dc.relationZhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302-2309. https://doi.org/10.1093/nar/gki524
dc.relationZhou, H., Duan, H., Liu, Y., Sun, X., Zhao, J., & Lin, H. (2019). Patellin protein family functions in plant development and stress response. Journal of Plant Physiology, 234-235, 94-97. https://doi.org/10.1016/j.jplph.2019.01.012
dc.relationZhou, H., Wang, C., Tan, T., Cai, J., He, J., & Lin, H. (2018). Patellin1 Negatively Modulates Salt Tolerance by Regulating PM Na+/H+ Antiport Activity and Cellular Redox Homeostasis in Arabidopsis. Plant and Cell Physiology, 59(8), 1630-1642. https://doi.org/10.1093/pcp/pcy081
dc.relationZipfel, C. (2014). Plant pattern-recognition receptors. Trends in Immunology, 35(7), 345-351. https://doi.org/10.1016/j.it.2014.05.004
dc.relationChu, M., Li, J., Zhang, J., Shen, S., Li, C., Gao, Y., & Zhang, S. (2018). AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. Journal of Experimental Botany, 69(21), 5241-5253. https://doi.org/10.1093/jxb/ery278
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.titleValidación de la interacción entre el efector XopAE de Xanthomonas phaseoli pv. manihotis y una patelina de plantas involucrada en inmunidad vegetal
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución