dc.contributorGómez Ramírez, Jorge Mario
dc.contributorRíos Ratkovich, Nicolás
dc.contributorAristizábal Castro, Jadier
dc.creatorMcCormick Mantilla, Jaime Andrés
dc.date.accessioned2023-06-30T20:41:21Z
dc.date.accessioned2023-09-07T02:07:39Z
dc.date.available2023-06-30T20:41:21Z
dc.date.available2023-09-07T02:07:39Z
dc.date.created2023-06-30T20:41:21Z
dc.date.issued2023-06-08
dc.identifierhttp://hdl.handle.net/1992/68069
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728974
dc.description.abstractThis paper evaluates the technical feasibility of a LiBr-H2O absorption chiller with solar energy supply. The technical feasibility is evaluated by means of two case studies in a residential environment in a tropical region with mean high temperatures over 35 °C. The optimal control problem is developed using a dynamic model and the control strategy is formulated by means of an algebraic modeling software, GAMS.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Química
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relationDu Plessis, A. (2018). Climate change: Current drivers, observations and impacts on the globe's natural and human systems. Springer Water. https://doi.org/10.1007/978-3-030-03186-2_3
dc.relationWorking Group I. (2021). Climate Change 2021. The Physical Science Basis. Summary for Policymakers. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
dc.relationNadel, E. R., Pandolf, K. B., Roberts, M. F., & Stolwijk, J. A. (1974). Mechanisms of thermal acclimation to exercise and heat. Journal of Applied Physiology, 37(4), 515-520. https://doi.org/10.1152/jappl.1974.37.4.515
dc.relationRoyte, E. (2021, July). Too hot to live. National Geographic, 36-61.
dc.relationEnvironment, Climate Change and Health, Guidelines Review Committee (2018). WHO Housing and health guidelines. World Health Organization. https://www.who.int/publications/i/item/9789241550376
dc.relationDong, Y., Coleman, M., & Miller, S. A. (2021). Greenhouse gas emissions from air conditioning and refrigeration service expansion in developing countries. Annual Review of Environment and Resources, 46(1), 59-83. https://doi.org/10.1146/annurev-environ- 012220-034103
dc.relationGibelhaus, A., Fidorra, N., Lanzerath, F., Bau, U., Köhler, J., & Bardow, A. (2019). Hybrid refrigeration by CO2 vapour compression cycle and water-based adsorption chiller: An efficient combination of natural working fluids. International Journal of Refrigeration. doi:10.1016/j.ijrefrig.2019.03.036
dc.relationBansal, P. K., & Martin, A. (2000). Comparative study of vapour compression, thermoelectric and absorption refrigerators. International Journal of Energy Research, 24(2), 93-107. doi:10.1002/(sici)1099-114x(200002)24:2<93::aid-er563>3.0.co;2-6
dc.relationBenghanem, M. (2011). Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia. Applied Energy, 88(4), 1427-1433. doi:10.1016/j.apenergy.2010.10.001.
dc.relationEisa, M. A. R., Diggory, P. J., & Holland, F. A. (1987). Experimental studies to determine the effect of differences in absorber and condenser temperatures on the performance of a water-lithium bromide absorption cooler. Energy Conversion and Management, 27(2), 253-259. https://doi.org/10.1016/0196-8904(87)90082-3
dc.relationSamanta, S., & Basu, D. N. (2015). Energy and entropy-based optimization of a single- stage water-lithium bromide absorption refrigeration system. Heat Transfer Engineering, 37(2), 232-241. https://doi.org/10.1080/01457632.2015.1044420.
dc.relationArora, A., & Kaushik, S. C. (2009). Theoretical analysis of LiBr/H2O absorption refrigeration systems. International Journal of Energy Research, 33(15), 1321-1340. https://doi.org/10.1002/er.1542
dc.relationMisra, R. D., Sahoo, P. K., Sahoo, S., & Gupta, A. (2003). Thermoeconomic optimization of a single effect water/libr vapour absorption refrigeration system. International Journal of Refrigeration, 26(2), 158-169. https://doi.org/10.1016/s0140-7007(02)00086-5
dc.relationRubio-Maya, C., Pacheco-Ibarra, J. J., Belman-Flores, J. M., Galván-González, S. R., & Mendoza-Covarrubias, C. (2012). NLP model of a LiBr-H2O absorption refrigeration system for the minimization of the annual operating cost. Applied Thermal Engineering, 37, 10-18. https://doi.org/10.1016/j.applthermaleng.2011.12.035
dc.relationAssilzadeh, F., Kalogirou, S. A., Ali, Y., & Sopian, K. (2005). Simulation and optimization of a LIBR solar absorption cooling system with evacuated tube collectors. Renewable Energy, 30(8), 1143-1159. https://doi.org/10.1016/j.renene.2004.09.017
dc.relationSharifi, S., Nozad Heravi, F., Shirmohammadi, R., Ghasempour, R., Petrakopoulou, F., & Romeo, L. M. (2020). Comprehensive thermodynamic and operational optimization of a solar-assisted LiBr/water absorption refrigeration system. Energy Reports, 6, 2309-2323. https://doi.org/10.1016/j.egyr.2020.08.013
dc.relationXu, Y.-jie, Zhang, S.-jie, & Xiao, Y.-han. (2016). Modeling the dynamic simulation and control of a single effect LiBr-H2O absorption chiller. Applied Thermal Engineering, 107, 1183-1191. https://doi.org/10.1016/j.applthermaleng.2016.06.043
dc.relationGoyal, A., Rattner, A. S., & Garimella, S. (2015). Model-based feedback control of an ammonia-water absorption chiller. Science and Technology for the Built Environment, 21(3), 357-364. https://doi.org/10.1080/10789669.2014.982412
dc.relationSabbagh, A. A., & Gómez, J. M. (2018). Optimal control of single stage LIBR/Water Absorption Chiller. International Journal of Refrigeration, 92, 1-9. https://doi.org/10.1016/j.ijrefrig.2018.05.007
dc.relationArshad, M. U., Ghani, M. U., Ullah, A., & Zaman, M. (2018). Exergy analysis and optimization of series and parallel flow configurations of vapor absorption chiller. 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). https://doi.org/10.1109/pgsret.2018.8685930
dc.relationAlbers, J. (2014). New absorption chiller and control strategy for the solar assisted cooling system at the German Federal Environment Agency. International Journal of Refrigeration, 39, 48-56. https://doi.org/10.1016/j.ijrefrig.2013.08.015
dc.relationEvola, G., Le Pierrès, N., Boudehenn, F., & Papillon, P. (2013). Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LIBR/Water Absorption Chiller. International Journal of Refrigeration, 36(3), 1015-1028. https://doi.org/10.1016/j.ijrefrig.2012.10.013
dc.relationIrvine TF, Liley PE. (1984). Steam and gas tables with computer equations. USA: Academic Press.
dc.relationPatek J, Klomfar J. (2006) Computationally effective formulation of the thermodynamic properties of LiBr-H2O solution from 273 to 500 K over full composition range. International Journal of Refrigeration, 566-78.
dc.relationW. Wagnwe, A. Pru. (2002) The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical Chemistry.
dc.relationThe World Bank Group, Solargis (2022). Global Solar Atlas. https://globalsolaratlas.info/map
dc.relationInvidiata, A., & Ghisi, E. (2016). Impact of climate change on heating and cooling energy demand in houses in Brazil. Energy and Buildings, 130, 20-32. https://doi.org/10.1016/j.enbuild.2016.07.067
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleDynamic simulation of solar driven absorption chiller: a case study in Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución