dc.contributor | Rodríguez Susa, Manuel Salvador | |
dc.contributor | Martínez León, Aida Juliana | |
dc.contributor | Husserl Orjuela, Johana | |
dc.contributor | Espinosa Ramírez, Adriana Janneth | |
dc.creator | Vargas Piñeros, Jairo Fernando | |
dc.date.accessioned | 2023-06-30T13:15:46Z | |
dc.date.accessioned | 2023-09-07T02:07:32Z | |
dc.date.available | 2023-06-30T13:15:46Z | |
dc.date.available | 2023-09-07T02:07:32Z | |
dc.date.created | 2023-06-30T13:15:46Z | |
dc.date.issued | 2023-06-28 | |
dc.identifier | http://hdl.handle.net/1992/68031 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728972 | |
dc.description.abstract | El presente documento pretende mostrar algunos resultados preliminares sobre la exposición de levadura Saccharomyces cerevisiae ante contaminantes presentes en diversas muestras de agua potable. En particular, busca evaluar un ensayo de letalidad en este microorganismo que sea empleado como un método de detección rápida de toxicidad en agua potable. Partiendo de una serie de diluciones hechas a partir de soluciones stock de los compuestos a evaluar, se hace el recuento estimado de UFC/100 mL después de periodos de incubación de 48 horas, en el que se evidencia que la S. cerevisiae se inhibe a concentraciones inferiores a las reguladas por estándares internacionales de calidad de agua para algunos compuestos. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Ambiental | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Civil y Ambiental | |
dc.relation | AAT Bioquest Incorporated. (2021a, March 22). What are the advantages of the Ames test for mutation detection? What Are the Advantages of the Ames Test for Mutation Detection? https://www.aatbio.com/resources/faq-frequently-asked-questions/What-are-the-advantages-of-the-Ames-test-for-mutation-detection | |
dc.relation | AAT Bioquest Incorporated. (2021b, March 22). What limitations does the Ames test have? What Limitations Does the Ames Test Have? https://www.aatbio.com/resources/faq-frequently-asked-questions/What-limitations-does-the-Ames-test-have | |
dc.relation | Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Asif Tahir, M., & Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. In Science of the Total Environment (Vol. 626, pp. 1295-1309). | |
dc.relation | Adam, W. (1973). Biologisches Licht. Chemie in Unserer Zeit, 7(6). | |
dc.relation | Agostini, L. P., Dettogni, R. S., dos Reis, R. S., Stur, E., dos Santos, E. V. W., Ventorim, D. P., Garcia, F. M., Cardoso, R. C., Graceli, J. B., & Louro, I. D. (2020). Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. In Science of the Total Environment (Vol. 705). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.135808 | |
dc.relation | Agudelo-Calderón, C., Quiroz-Arcentales, L., García-Ubaque, C., García-Ubaque, J., Robledo-Martínez, R., & Vaca-Bohórquez, M. (2016). Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18(1). | |
dc.relation | Alexopoulos, C., & Mims, C. (1985). Introducción A La Micología (1st ed.). John Wiley & Sons. | |
dc.relation | Álvarez Bayona, M. A. (2021). Análisis de la ocurrencia de contaminantes emergentes (Glifosato, Paraquat e Ibuprofeno) en fuentes superficiales y en agua potable de Cúcuta - Norte de Santander, y su remoción utilizando tecnología de membranas. Universidad del Norte. | |
dc.relation | Baribeau, H., Krasner, S. W., Chinn, R., & Singer, P. C. (2005). Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. In Journal / American Water Works Association (Vol. 97, Issue 2). American Water Works Association. https://doi.org/10.1002/j.1551-8833.2005.tb10826.x | |
dc.relation | Barrera, J. A., Espinosa, A. J., & Álvarez, J. P. (2019). Contaminación en el lago de Tota, Colombia: toxicidad aguda en Daphnia magna (Cladocera: Daphniidae) e Hydra attenuata (Hydroida: Hydridae). Revista de Biología Tropical, 67(1), 11-23. | |
dc.relation | Benavides-Piracón, J. A., Hernández-Bonilla, D., Menezes-Filho, J. A., van Wendel de Joode, B., Lozada, Y. A. V., Bahia, T. C., Cortes, M. A. Q., Achury, N. J. M., Muñoz, I. A. M., & Pardo, M. A. H. (2022). Prenatal and postnatal exposure to pesticides and school-age children¿s cognitive ability in rural Bogotá, Colombia. NeuroToxicology, 90, 112¿120. https://doi.org/10.1016/j.neuro.2022.03.008 | |
dc.relation | Benítez, J. S., Rodríguez, C. M., & Casas, A. F. (2021). Disinfection byproducts (DBPs) in drinking water supply systems: A systematic review. Physics and Chemistry of the Earth, 123. https://doi.org/10.1016/j.pce.2021.102987 | |
dc.relation | Berry, A., Singh, G., Kaur, S. J., Bala, K., & Pradesh, U. (2015). Aluminium Phosphide¿: Toxicity Mechanism and Credible Treatments. World Journal of Pharmacy and Pharmaceutical Sciences, 4(10), 2276-2293. | |
dc.relation | Blair, A., Ritz, B., Wesseling, C., & Freeman, L. B. (2015). Pesticides and human health. In Occupational and Environmental Medicine (Vol. 72, Issue 2, pp. 81-82). BMJ Publishing Group Ltd. | |
dc.relation | Brucker, N., Menezes, C., Charão, M. F., Da Silva, L. C., Sant¿Anna Oliveira, T. S., Menezes, J. M., Muller, I., Gioda, A., De Carvalho, B. R. F., De Castro Paz Calheiros, O., Rizzetti, T. M., Zanella, R., & Garcia, S. C. (2021). Bioassays to screen the toxicity in drinking water samples collected in Brazilian rural area. Toxicology Research, 10(4), 856-867. https://doi.org/10.1093/toxres/tfab072 | |
dc.relation | Buschini, A., Carboni, P., Furlini, M., Poli, P., & Rossi, C. (2004). Sodium hypochlorite-, chlorine dioxide- and peracetic acid-induced genotoxicity detected by the Comet assay and Saccharomyces cerevisiae D7 tests. Mutagenesis, 19(2), 157-162. https://doi.org/10.1093/mutage/geh012 | |
dc.relation | Campo Albán, C. E. (2003). Determinación de ácidos haloacéticos en agua potable en la ciudad de Bogotá [Universidad de Los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9033/u234857.pdf?sequence=1 | |
dc.relation | CDC. (2022, May 27). La Salmonella y los alimentos. ¿Qué Puede Causar Una Infección Por Salmonella? https://www.cdc.gov/foodsafety/es/communication/salmonella-and-food-sp.html#print | |
dc.relation | Chinalia, A. F., Regali-Seleghin, M. H., & Correa, E. M. (2007). 2 , 4-D Toxicity¿: Cause , Effect and Control. Terrestrial and Aquatic Environmetal Toxicology, 1(2), 24-33. | |
dc.relation | Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. The Science of the Total Environment, 569-570, 476-488. https://doi.org/10.1016/j.scitotenv.2016.06.166 | |
dc.relation | Correa García, M. H., Zuluaga Ramírez, C., & Berrouet Mejía, M. C. (2020). Ácido 2-4 Diclorofenoxiacético, Un Herbicida Olvidado: Reporte De Dos Casos. Medicina UPB, 39(2), 56-59. https://doi.org/10.18566/medupb.v39n2.a09 | |
dc.relation | Dias, P. J., Teixeira, M. C., Telo, J. O. P., & Sá -Correia, I. (2010). Insights into the Mechanisms of Toxicity and Tolerance to the Agricultural Fungicide Mancozeb in Yeast, as Suggested by a Chemogenomic Approach. Omics: A Journal of Integrative Biology, 14(2). https://doi.org/https://doi.org/10.1089/omi.2009.0134 | |
dc.relation | Díaz-Báez, M. C., Granados, Y. P., & Ronco, A. (2008). Ensayos para agua dulce. Ensayos Toxicológicos Para La Evaluación de Sustancias Químicas En Agua y Suelo. La Experiencia En México, 17-32. | |
dc.relation | Díaz-Criollo, S., Palma, M., Monroy-García, A. A., Idrovo, A. J., Combariza, D., & Varona-Uribe, M. E. (2020). Chronic pesticide mixture exposure including paraquat and respiratory outcomes among Colombian farmers. Industrial Health, 15-21. https://doi.org/https://doi.org/10.2486/indhealth.2018-0111 | |
dc.relation | Dolezalova, J., & Rumlova, L. (2014). A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test. Environmental Toxicology and Pharmacology, 38(3), 977-981. https://doi.org/10.1016/j.etap.2014.10.009 | |
dc.relation | Dordevi¿, T. M., & Durovi¿-Pej¿ev, R. D. (2015). Dissipation of chlorpyrifos-methyl by saccharomyces cerevisiae during wheat fermentation. LWT, 61(2), 516-523. https://doi.org/10.1016/j.lwt.2014.12.044 | |
dc.relation | Estève, K., Poupot, C., Dabert, P., Mietton-Peuchot, M., & Milisic, V. (2009). A Saccharomyces cerevisiae-based bioassay for assessing pesticide toxicity. Journal of Industrial Microbiology and Biotechnology, 36(12), 1529-1534. https://doi.org/10.1007/s10295-009-0649-1 | |
dc.relation | Garcia, S., & Isenberg, H. D. (2010). Clinical Microbiology Procedures Handbook. http://estore.asm.org | |
dc.relation | Ge, Y., Liu, X., Nan, F., Liu, Q., Lv, J., Feng, J., & Xie, S. (2022). Toxicological Effects of Mercuric Chloride Exposure on Scenedesmus quadricauda. Water (Switzerland), 14(20). https://doi.org/10.3390/w14203228 | |
dc.relation | Gill, J. P. K., Sethi, N., Mohan, A., Datta, S., & Girdhar, M. (2018). Glyphosate toxicity for animals. Environmental Chemistry Letters, 16(2), 401-426. https://doi.org/10.1007/s10311-017-0689-0 | |
dc.relation | Guzzella, L., Di Caterino, F., Monarca, S., Zani, C., Feretti, D., Zerbini, I., Nardi, G., Buschini, A., Poli, P., & Rossi, C. (2006). Detection of mutagens in water-distribution systems after disinfection. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 608(1), 72-81. https://doi.org/10.1016/j.mrgentox.2006.05.010 | |
dc.relation | Hernández Cogollo, M. E., & Marrugo Negrete, J. L. (2016). Trihalometanos y arsénico en el agua de consumo en los municipios de Chinúy Corozal de Colombia: evaluación delriesgo a la salud. Ingeniería y Desarrollo, 34, 88-115. | |
dc.relation | Hosiner, D., Gerber, S., Lichtenberg-Fraté, H., Glaser, W., Schüller, C., & Klipp, E. (2014). Impact of acute metal stress in Saccharomyces cerevisiae. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0083330 | |
dc.relation | Hurtado-McCormick, S., Sánchez, L., Martínez, J., Calderón, C., Calvo, D., Narváez, D., Lemus, M., Groot, H., & Rodríguez Susa, M. (2016). Fungi in biofilms of a drinking water network: Occurrence, diversity and mycotoxins approach. Water Science and Technology: Water Supply, 16(4), 905-914. https://doi.org/10.2166/ws.2016.024 | |
dc.relation | Instituto Colombiano Agropecuario. (2021). Estadísticas de Comercialización de Plaguicidas Químicos de Uso Agrícola - 2020. www.ica.gov.co | |
dc.relation | Jennings, V. L. K., Rayner-Brandes, M. H., & Bird, D. J. (2001). Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Research, 35(14), 3448-3456. | |
dc.relation | King, D. A., Hannum, D. M., Qi, J.-S., & Hurst, J. K. (2004). HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 423(1), 170-181. https://doi.org/https://doi.org/10.1016/j.abb.2003.12.012 | |
dc.relation | Kristiana, I., Lethorn, A., Joll, C., & Heitz, A. (2014). To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples. Water Research, 59, 90-98. https://doi.org/10.1016/j.watres.2014.04.006 | |
dc.relation | Lal, S., & Lal, R. (1987). Bioaccumulation, metabolism, and effects of DDT, fenitrothion, and chlorpyrifos onSaccharomyces cerevisiae. Archives of Environmental Contamination and Toxicology, 16(6), 753-757. https://doi.org/10.1007/BF01055426 | |
dc.relation | Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., & Huang, W. (2015). Effect of Initial PH on Growth Characteristics and Fermentation Properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4), M800-M808. https://doi.org/10.1111/1750-3841.12813 | |
dc.relation | Lozano, H., Perez, H., & Vesga, C. J. (1984). PROSPECCION GEOQUIMICA Y GENESIS DEL MERCURIO EN EL FLANCO OCCIDENTAL DE LA CORDILLERA CENTRAL DE COLOMBIA MUNICIPIOS DE ARANZAZU, SALAMINA Y PACORA DEPARTAMENTO DE CALDAS. | |
dc.relation | Melo, A., Ferreira, C., Ferreira, I. M. P. L. V. O., & Mansilha, C. (2019). Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna. Journal of Toxicology and Environmental Health - Part A: Current Issues, 82(18), 977-989. https://doi.org/10.1080/15287394.2019.1676959 | |
dc.relation | Resolución 2115 de 2007, Pub. L. No. 2115 (2007). | |
dc.relation | Resolución 622 de 2020, Pub. L. No. 622 de 2020 (2020). | |
dc.relation | Miranda, D., Carranza, C., Rojas, C. A., Fischer, G., & Zurita, J. (2008). Metales pesados cultivos río Bogotá 2008. https://doi.org/https://doi.org/10.17584/rcch.2008v2i2.1186 | |
dc.relation | Monarca, S., Zani, C., Richardson, S. D., Thruston, A. D., Moretti, M., Feretti, D., & Villarini, M. (2004). A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Research, 38(17), 3809-3819. https://doi.org/10.1016/j.watres.2004.07.003 | |
dc.relation | Moyano-Cires Ivanoff, P. V. (2019). Efectos neurotóxicos del clorpirifos sobre el sistema colinérgico e implicaciones legales del uso del perfil toxicogenómico como biomarcador de toxicidad. Ene, 9, 44. | |
dc.relation | Nasser, F., & Lynch, I. (2019). Updating traditional regulatory tests for use with novel materials: Nanomaterial toxicity testing with Daphnia magna. Safety Science, 118(April), 497-504. https://doi.org/10.1016/j.ssci.2019.05.045 | |
dc.relation | National Center for Biotechnology Information. (2023a). Chlorpyrifos. In PubChem Compound Summary for CID 2730, Chlorpyrifos. https://pubchem.ncbi.nlm.nih.gov/compound/Chlorpyrifos | |
dc.relation | National Center for Biotechnology Information. (2023b). PubChem Annotation Record for , Chloroacetic acid. https://pubchem.ncbi.nlm.nih.gov | |
dc.relation | National Center for Biotechnology Information. (2023c). PubChem Compound Summary for CID 6421, Trichloroacetic Acid. https://pubchem.ncbi.nlm.nih.gov/compound/Trichloroacetic-Acid | |
dc.relation | National Center for Biotechnology Information. (2023d). PubChem Compound Summary for CID 13307026, zinc;manganese(2+);N-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate. http://www.cdpr.ca.gov/docs/risk/toxsums/toxsumlist.htm] | |
dc.relation | Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., & Pivokonsky, M. (2019). Microplastics in drinking water treatment - Current knowledge and research needs. Science of The Total Environment, 667, 730-740. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.431 | |
dc.relation | Parlamento Europeo, & Consejo de la Unión Europea. (2020). Directiva (UE) 2020/2184 del Parlamento Europeo. https://eur-lex.europa.eu/eli/dir/2020/2184/oj | |
dc.relation | Parvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32(2), 265-268. https://doi.org/https://doi.org/10.1016/j.envint.2005.08.022 | |
dc.relation | Plewa, M. J., Wagner, E. D., & Richardson, S. D. (2017). TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. Journal of Environmental Sciences (China), 58, 208-216. https://doi.org/10.1016/j.jes.2017.04.014 | |
dc.relation | Pothuluri, J. V, Hinson, J. A., & Cerniglia, C. E. (1991). Propanil: Toxicological Characteristics, Metabolism, and Biodegradation Potential in Soil. Journal of Environmental Quality, 20(2), 330-347. https://doi.org/https://doi.org/10.2134/jeq1991.00472425002000020002x | |
dc.relation | Procop, G., Church, D., Hall, G., Janda, W., Koneman, E., Schreckenberger, P., & Woods, G. (2017). Koneman's Color Atlas & Textbook of Diagnostic Microbiology (Wolters Kluwer, Ed.; Seventh). Lippincott Williams & Wilkins. | |
dc.relation | Decreto 1575 de 2007, Pub. L. No. 1575 de 2007, Diario Oficial 46623 (2007). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=30007 | |
dc.relation | Richardson, S. D., & Plewa, M. J. (2020). To regulate or not to regulate? What to do with more toxic disinfection by-products? Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.103939 | |
dc.relation | Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. In Mutation Research - Reviews in Mutation Research (Vol. 636, Issues 1¿3, pp. 178-242). https://doi.org/10.1016/j.mrrev.2007.09.001 | |
dc.relation | Richardson, S. D., & Postigo, C. (2012). Drinking Water Disinfection By-products. In Handbook of Environmental Chemistry (Vol. 20, pp. 93-137). Springer Verlag. https://doi.org/10.1007/698_2011_125 | |
dc.relation | Rodríguez-Padilla, C. (2022). Intoxicación por fosfuro de aluminio. Revista Medicina Legal de Costa Rica, 39(1). | |
dc.relation | Rojas Vásquez, D. A. (2021). Evaluación de encapsulados para el control de contaminantes emergentes en aguas [Fundación Universidad América]. https://hdl.handle.net/20.500.11839/8439 | |
dc.relation | Rumlova, L., & Dolezalova, J. (2012). A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environmental Toxicology and Pharmacology, 33(3), 459-464. https://doi.org/10.1016/j.etap.2012.01.008 | |
dc.relation | Rumlova, L., Dolezalova, J., Itoh, S., Gordon, B. A., Callan, P., & Bartram, J. (2011). Regulations and perspectives on disinfection by-products: Importance of estimating overall toxicity. Journal of Water Supply: Research and Technology - AQUA, 60(5), 261¿274. https://doi.org/10.2166/aqua.2011.068 | |
dc.relation | Runkle, J., Flocks, J., Economos, J., & Dunlop, A. L. (2017). A systematic review of Mancozeb as a reproductive and developmental hazard. In Environment International (Vol. 99, pp. 29-42). Elsevier Ltd. https://doi.org/10.1016/j.envint.2016.11.006 | |
dc.relation | Sabarwal, A., Kumar, K., & Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health¿Cancer and other associated disorders. In Environmental Toxicology and Pharmacology (Vol. 63, pp. 103-114). Elsevier B.V. https://doi.org/10.1016/j.etap.2018.08.018 | |
dc.relation | Salazar, K. D., Ustyugova, I. V., Brundage, K. M., Barnett, J. B., & Schafer, R. (2008). A review of the immunotoxicity of the pesticide 3,4-dichloropropionanalide. In Journal of Toxicology and Environmental Health - Part B: Critical Reviews (Vol. 11, Issue 8, pp. 630-645). https://doi.org/10.1080/10937400701724386 | |
dc.relation | Salazar Serna, D. M., & Peñuela, G. (2016). Effect of pre-oxidation with chlorine dioxide on the formation of trihalomethanes and haloacetic acids in a drinking water system. Revista Politécnica, 12(22), 9-20. https://revistas.elpoli.edu.co/index.php/pol/article/view/872/744 | |
dc.relation | Singh, Y., Joshi, S. C., Satyawali, V., & Gupta, A. (2014). Acute aluminium phosphide poisoning, what is new? The Egyptian Journal of Internal Medicine, 26(3), 99-103. https://doi.org/10.4103/1110-7782.145298 | |
dc.relation | The Gene Ontology Consortium. (2008). The Gene Ontology project in 2008. Nucleic Acids Research, D440-D444. https://doi.org/https://doi.org/10.1093/nar/gkm883 | |
dc.relation | Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K., & ¿laska, B. (2021). Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Science of The Total Environment, 763, 143038. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143038 | |
dc.relation | Todorova, T. I., Parvanova, P. N., Çavu¿, H., Yovkova, M., Dimitrova, M., Mostafa, S., Mohafrash, M., Mossa, A.-T. H., Boyadzhiev, K. P., Dimitrov, M. D., & Chankova, S. G. (2020). Set of Tests for Chlorpyrifos Toxicity Screening. Ecologia Balkanica, 3, 227-238. http://eb.bio.uni-plovdiv.bg | |
dc.relation | Toro Vélez, A. F. (2021). Evaluación Integral de la Presencia de Micro-Contaminantes en la Cuenca Alta del Río Cauca. Universidad del Cauca. | |
dc.relation | Tsai, W. T. (2013). A review on environmental exposure and health risks of herbicide paraquat. In Toxicological and Environmental Chemistry (Vol. 95, Issue 2, pp. 197-206). https://doi.org/10.1080/02772248.2012.761999 | |
dc.relation | U.S. Environmental Protection Agency. (2018). 2018 Edition of the Drinking Water Standards and Health Advisories Tables. March. | |
dc.relation | Varona-Uribe, M. E., Torres-Rey, C. H., Díaz-Criollo, S., Palma-Parra, R. M., Narváez, D. M., Carmona, S. P., Briceño, L., & Idrovo, A. J. (2016). Exposure to pesticide mixtures and DNA damage among rice field workers. Archives of Environmental and Occupational Health, 71(1), 3-9. https://doi.org/10.1080/19338244.2014.910489 | |
dc.relation | Villa, F. A. A., & Perez, F. J. M. (2021). Evaluación toxicológica del agua y los sedimentos en el embalse La Fe, Colombia. RIAA, 12(1), 10. | |
dc.relation | Walteros Pinzón, C. D., Fernández Niño, M. Á., & Reyes Barrios, L. H. (2020). Caracterización de cepas de levadura colombiana Saccharomyces cerevisiae para su potencial uso en la producción de cerveza "Colombian Ale" [Universidad de Los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/44911/u831193.pdf?sequence=1&isAllowed=y | |
dc.relation | World Health Organization. (2020). Agua para consumo humano. Factsheet on Drinking Water. https://www.who.int/es/news-room/fact-sheets/detail/drinking-water | |
dc.relation | World Health Organization. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda (4th ed., Vol. 1, Issue 12). | |
dc.relation | Wysocki, R., & Tamás, M. J. (2010). How Saccharomyces cerevisiae copes with toxicmetals and metalloids. FEMS Microbiology Reviews, 34(6), 925-951. https://doi.org/10.1111/j.1574-6976.2010.00217.x | |
dc.relation | Yang, Y., Komaki, Y., Kimura, S. Y., Hu, H.-Y., Wagner, E. D., Mariñas, B. J., & Plewa, M. J. (2014). Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environmental Science & Technology, 48(20), 12362-12369. https://doi.org/10.1021/es503621e | |
dc.relation | Zadorozhnaya, O., Kirsanov, D., Buzhinsky, I., Tsarev, F., Abramova, N., Bratov, A., Muñoz, F. J., Ribó, J., Bori, J., Riva, M. C., & Legin, A. (2015). Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria. Sensors and Actuators B: Chemical, 207, 1069-1075. https://doi.org/https://doi.org/10.1016/j.snb.2014.08.056 | |
dc.relation | Zhang, L. (2022). Machine learning for enumeration of cell colony forming units. Visual Computing for Industry, Biomedicine, and Art, 5(1). https://doi.org/10.1186/s42492-022-00122-3 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Medición de sensibilidad de levadura Saccharomyces cerevisiae ante pesticidas y subproductos de desinfección de agua potable | |
dc.type | Trabajo de grado - Maestría | |