dc.contributorRodríguez Susa, Manuel Salvador
dc.contributorMartínez León, Aida Juliana
dc.contributorHusserl Orjuela, Johana
dc.contributorEspinosa Ramírez, Adriana Janneth
dc.creatorVargas Piñeros, Jairo Fernando
dc.date.accessioned2023-06-30T13:15:46Z
dc.date.accessioned2023-09-07T02:07:32Z
dc.date.available2023-06-30T13:15:46Z
dc.date.available2023-09-07T02:07:32Z
dc.date.created2023-06-30T13:15:46Z
dc.date.issued2023-06-28
dc.identifierhttp://hdl.handle.net/1992/68031
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728972
dc.description.abstractEl presente documento pretende mostrar algunos resultados preliminares sobre la exposición de levadura Saccharomyces cerevisiae ante contaminantes presentes en diversas muestras de agua potable. En particular, busca evaluar un ensayo de letalidad en este microorganismo que sea empleado como un método de detección rápida de toxicidad en agua potable. Partiendo de una serie de diluciones hechas a partir de soluciones stock de los compuestos a evaluar, se hace el recuento estimado de UFC/100 mL después de periodos de incubación de 48 horas, en el que se evidencia que la S. cerevisiae se inhibe a concentraciones inferiores a las reguladas por estándares internacionales de calidad de agua para algunos compuestos.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Ambiental
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Civil y Ambiental
dc.relationAAT Bioquest Incorporated. (2021a, March 22). What are the advantages of the Ames test for mutation detection? What Are the Advantages of the Ames Test for Mutation Detection? https://www.aatbio.com/resources/faq-frequently-asked-questions/What-are-the-advantages-of-the-Ames-test-for-mutation-detection
dc.relationAAT Bioquest Incorporated. (2021b, March 22). What limitations does the Ames test have? What Limitations Does the Ames Test Have? https://www.aatbio.com/resources/faq-frequently-asked-questions/What-limitations-does-the-Ames-test-have
dc.relationAbbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G. A., Asif Tahir, M., & Iqbal, M. (2018). Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. In Science of the Total Environment (Vol. 626, pp. 1295-1309).
dc.relationAdam, W. (1973). Biologisches Licht. Chemie in Unserer Zeit, 7(6).
dc.relationAgostini, L. P., Dettogni, R. S., dos Reis, R. S., Stur, E., dos Santos, E. V. W., Ventorim, D. P., Garcia, F. M., Cardoso, R. C., Graceli, J. B., & Louro, I. D. (2020). Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. In Science of the Total Environment (Vol. 705). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.135808
dc.relationAgudelo-Calderón, C., Quiroz-Arcentales, L., García-Ubaque, C., García-Ubaque, J., Robledo-Martínez, R., & Vaca-Bohórquez, M. (2016). Evaluación de condiciones ambientales: aire, agua y suelos en áreas de actividad minera en Boyacá, Colombia. Revista de Salud Pública, 18(1).
dc.relationAlexopoulos, C., & Mims, C. (1985). Introducción A La Micología (1st ed.). John Wiley & Sons.
dc.relationÁlvarez Bayona, M. A. (2021). Análisis de la ocurrencia de contaminantes emergentes (Glifosato, Paraquat e Ibuprofeno) en fuentes superficiales y en agua potable de Cúcuta - Norte de Santander, y su remoción utilizando tecnología de membranas. Universidad del Norte.
dc.relationBaribeau, H., Krasner, S. W., Chinn, R., & Singer, P. C. (2005). Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. In Journal / American Water Works Association (Vol. 97, Issue 2). American Water Works Association. https://doi.org/10.1002/j.1551-8833.2005.tb10826.x
dc.relationBarrera, J. A., Espinosa, A. J., & Álvarez, J. P. (2019). Contaminación en el lago de Tota, Colombia: toxicidad aguda en Daphnia magna (Cladocera: Daphniidae) e Hydra attenuata (Hydroida: Hydridae). Revista de Biología Tropical, 67(1), 11-23.
dc.relationBenavides-Piracón, J. A., Hernández-Bonilla, D., Menezes-Filho, J. A., van Wendel de Joode, B., Lozada, Y. A. V., Bahia, T. C., Cortes, M. A. Q., Achury, N. J. M., Muñoz, I. A. M., & Pardo, M. A. H. (2022). Prenatal and postnatal exposure to pesticides and school-age children¿s cognitive ability in rural Bogotá, Colombia. NeuroToxicology, 90, 112¿120. https://doi.org/10.1016/j.neuro.2022.03.008
dc.relationBenítez, J. S., Rodríguez, C. M., & Casas, A. F. (2021). Disinfection byproducts (DBPs) in drinking water supply systems: A systematic review. Physics and Chemistry of the Earth, 123. https://doi.org/10.1016/j.pce.2021.102987
dc.relationBerry, A., Singh, G., Kaur, S. J., Bala, K., & Pradesh, U. (2015). Aluminium Phosphide¿: Toxicity Mechanism and Credible Treatments. World Journal of Pharmacy and Pharmaceutical Sciences, 4(10), 2276-2293.
dc.relationBlair, A., Ritz, B., Wesseling, C., & Freeman, L. B. (2015). Pesticides and human health. In Occupational and Environmental Medicine (Vol. 72, Issue 2, pp. 81-82). BMJ Publishing Group Ltd.
dc.relationBrucker, N., Menezes, C., Charão, M. F., Da Silva, L. C., Sant¿Anna Oliveira, T. S., Menezes, J. M., Muller, I., Gioda, A., De Carvalho, B. R. F., De Castro Paz Calheiros, O., Rizzetti, T. M., Zanella, R., & Garcia, S. C. (2021). Bioassays to screen the toxicity in drinking water samples collected in Brazilian rural area. Toxicology Research, 10(4), 856-867. https://doi.org/10.1093/toxres/tfab072
dc.relationBuschini, A., Carboni, P., Furlini, M., Poli, P., & Rossi, C. (2004). Sodium hypochlorite-, chlorine dioxide- and peracetic acid-induced genotoxicity detected by the Comet assay and Saccharomyces cerevisiae D7 tests. Mutagenesis, 19(2), 157-162. https://doi.org/10.1093/mutage/geh012
dc.relationCampo Albán, C. E. (2003). Determinación de ácidos haloacéticos en agua potable en la ciudad de Bogotá [Universidad de Los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/9033/u234857.pdf?sequence=1
dc.relationCDC. (2022, May 27). La Salmonella y los alimentos. ¿Qué Puede Causar Una Infección Por Salmonella? https://www.cdc.gov/foodsafety/es/communication/salmonella-and-food-sp.html#print
dc.relationChinalia, A. F., Regali-Seleghin, M. H., & Correa, E. M. (2007). 2 , 4-D Toxicity¿: Cause , Effect and Control. Terrestrial and Aquatic Environmetal Toxicology, 1(2), 24-33.
dc.relationChowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. The Science of the Total Environment, 569-570, 476-488. https://doi.org/10.1016/j.scitotenv.2016.06.166
dc.relationCorrea García, M. H., Zuluaga Ramírez, C., & Berrouet Mejía, M. C. (2020). Ácido 2-4 Diclorofenoxiacético, Un Herbicida Olvidado: Reporte De Dos Casos. Medicina UPB, 39(2), 56-59. https://doi.org/10.18566/medupb.v39n2.a09
dc.relationDias, P. J., Teixeira, M. C., Telo, J. O. P., & Sá -Correia, I. (2010). Insights into the Mechanisms of Toxicity and Tolerance to the Agricultural Fungicide Mancozeb in Yeast, as Suggested by a Chemogenomic Approach. Omics: A Journal of Integrative Biology, 14(2). https://doi.org/https://doi.org/10.1089/omi.2009.0134
dc.relationDíaz-Báez, M. C., Granados, Y. P., & Ronco, A. (2008). Ensayos para agua dulce. Ensayos Toxicológicos Para La Evaluación de Sustancias Químicas En Agua y Suelo. La Experiencia En México, 17-32.
dc.relationDíaz-Criollo, S., Palma, M., Monroy-García, A. A., Idrovo, A. J., Combariza, D., & Varona-Uribe, M. E. (2020). Chronic pesticide mixture exposure including paraquat and respiratory outcomes among Colombian farmers. Industrial Health, 15-21. https://doi.org/https://doi.org/10.2486/indhealth.2018-0111
dc.relationDolezalova, J., & Rumlova, L. (2014). A new biological test of water toxicity-yeast Saccharomyces cerevisiae conductometric test. Environmental Toxicology and Pharmacology, 38(3), 977-981. https://doi.org/10.1016/j.etap.2014.10.009
dc.relationDordevi¿, T. M., & Durovi¿-Pej¿ev, R. D. (2015). Dissipation of chlorpyrifos-methyl by saccharomyces cerevisiae during wheat fermentation. LWT, 61(2), 516-523. https://doi.org/10.1016/j.lwt.2014.12.044
dc.relationEstève, K., Poupot, C., Dabert, P., Mietton-Peuchot, M., & Milisic, V. (2009). A Saccharomyces cerevisiae-based bioassay for assessing pesticide toxicity. Journal of Industrial Microbiology and Biotechnology, 36(12), 1529-1534. https://doi.org/10.1007/s10295-009-0649-1
dc.relationGarcia, S., & Isenberg, H. D. (2010). Clinical Microbiology Procedures Handbook. http://estore.asm.org
dc.relationGe, Y., Liu, X., Nan, F., Liu, Q., Lv, J., Feng, J., & Xie, S. (2022). Toxicological Effects of Mercuric Chloride Exposure on Scenedesmus quadricauda. Water (Switzerland), 14(20). https://doi.org/10.3390/w14203228
dc.relationGill, J. P. K., Sethi, N., Mohan, A., Datta, S., & Girdhar, M. (2018). Glyphosate toxicity for animals. Environmental Chemistry Letters, 16(2), 401-426. https://doi.org/10.1007/s10311-017-0689-0
dc.relationGuzzella, L., Di Caterino, F., Monarca, S., Zani, C., Feretti, D., Zerbini, I., Nardi, G., Buschini, A., Poli, P., & Rossi, C. (2006). Detection of mutagens in water-distribution systems after disinfection. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 608(1), 72-81. https://doi.org/10.1016/j.mrgentox.2006.05.010
dc.relationHernández Cogollo, M. E., & Marrugo Negrete, J. L. (2016). Trihalometanos y arsénico en el agua de consumo en los municipios de Chinúy Corozal de Colombia: evaluación delriesgo a la salud. Ingeniería y Desarrollo, 34, 88-115.
dc.relationHosiner, D., Gerber, S., Lichtenberg-Fraté, H., Glaser, W., Schüller, C., & Klipp, E. (2014). Impact of acute metal stress in Saccharomyces cerevisiae. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0083330
dc.relationHurtado-McCormick, S., Sánchez, L., Martínez, J., Calderón, C., Calvo, D., Narváez, D., Lemus, M., Groot, H., & Rodríguez Susa, M. (2016). Fungi in biofilms of a drinking water network: Occurrence, diversity and mycotoxins approach. Water Science and Technology: Water Supply, 16(4), 905-914. https://doi.org/10.2166/ws.2016.024
dc.relationInstituto Colombiano Agropecuario. (2021). Estadísticas de Comercialización de Plaguicidas Químicos de Uso Agrícola - 2020. www.ica.gov.co
dc.relationJennings, V. L. K., Rayner-Brandes, M. H., & Bird, D. J. (2001). Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Research, 35(14), 3448-3456.
dc.relationKing, D. A., Hannum, D. M., Qi, J.-S., & Hurst, J. K. (2004). HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 423(1), 170-181. https://doi.org/https://doi.org/10.1016/j.abb.2003.12.012
dc.relationKristiana, I., Lethorn, A., Joll, C., & Heitz, A. (2014). To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples. Water Research, 59, 90-98. https://doi.org/10.1016/j.watres.2014.04.006
dc.relationLal, S., & Lal, R. (1987). Bioaccumulation, metabolism, and effects of DDT, fenitrothion, and chlorpyrifos onSaccharomyces cerevisiae. Archives of Environmental Contamination and Toxicology, 16(6), 753-757. https://doi.org/10.1007/BF01055426
dc.relationLiu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., & Huang, W. (2015). Effect of Initial PH on Growth Characteristics and Fermentation Properties of Saccharomyces cerevisiae. Journal of Food Science, 80(4), M800-M808. https://doi.org/10.1111/1750-3841.12813
dc.relationLozano, H., Perez, H., & Vesga, C. J. (1984). PROSPECCION GEOQUIMICA Y GENESIS DEL MERCURIO EN EL FLANCO OCCIDENTAL DE LA CORDILLERA CENTRAL DE COLOMBIA MUNICIPIOS DE ARANZAZU, SALAMINA Y PACORA DEPARTAMENTO DE CALDAS.
dc.relationMelo, A., Ferreira, C., Ferreira, I. M. P. L. V. O., & Mansilha, C. (2019). Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna. Journal of Toxicology and Environmental Health - Part A: Current Issues, 82(18), 977-989. https://doi.org/10.1080/15287394.2019.1676959
dc.relationResolución 2115 de 2007, Pub. L. No. 2115 (2007).
dc.relationResolución 622 de 2020, Pub. L. No. 622 de 2020 (2020).
dc.relationMiranda, D., Carranza, C., Rojas, C. A., Fischer, G., & Zurita, J. (2008). Metales pesados cultivos río Bogotá 2008. https://doi.org/https://doi.org/10.17584/rcch.2008v2i2.1186
dc.relationMonarca, S., Zani, C., Richardson, S. D., Thruston, A. D., Moretti, M., Feretti, D., & Villarini, M. (2004). A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Research, 38(17), 3809-3819. https://doi.org/10.1016/j.watres.2004.07.003
dc.relationMoyano-Cires Ivanoff, P. V. (2019). Efectos neurotóxicos del clorpirifos sobre el sistema colinérgico e implicaciones legales del uso del perfil toxicogenómico como biomarcador de toxicidad. Ene, 9, 44.
dc.relationNasser, F., & Lynch, I. (2019). Updating traditional regulatory tests for use with novel materials: Nanomaterial toxicity testing with Daphnia magna. Safety Science, 118(April), 497-504. https://doi.org/10.1016/j.ssci.2019.05.045
dc.relationNational Center for Biotechnology Information. (2023a). Chlorpyrifos. In PubChem Compound Summary for CID 2730, Chlorpyrifos. https://pubchem.ncbi.nlm.nih.gov/compound/Chlorpyrifos
dc.relationNational Center for Biotechnology Information. (2023b). PubChem Annotation Record for , Chloroacetic acid. https://pubchem.ncbi.nlm.nih.gov
dc.relationNational Center for Biotechnology Information. (2023c). PubChem Compound Summary for CID 6421, Trichloroacetic Acid. https://pubchem.ncbi.nlm.nih.gov/compound/Trichloroacetic-Acid
dc.relationNational Center for Biotechnology Information. (2023d). PubChem Compound Summary for CID 13307026, zinc;manganese(2+);N-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate. http://www.cdpr.ca.gov/docs/risk/toxsums/toxsumlist.htm]
dc.relationNovotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., & Pivokonsky, M. (2019). Microplastics in drinking water treatment - Current knowledge and research needs. Science of The Total Environment, 667, 730-740. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.431
dc.relationParlamento Europeo, & Consejo de la Unión Europea. (2020). Directiva (UE) 2020/2184 del Parlamento Europeo. https://eur-lex.europa.eu/eli/dir/2020/2184/oj
dc.relationParvez, S., Venkataraman, C., & Mukherji, S. (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32(2), 265-268. https://doi.org/https://doi.org/10.1016/j.envint.2005.08.022
dc.relationPlewa, M. J., Wagner, E. D., & Richardson, S. D. (2017). TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. Journal of Environmental Sciences (China), 58, 208-216. https://doi.org/10.1016/j.jes.2017.04.014
dc.relationPothuluri, J. V, Hinson, J. A., & Cerniglia, C. E. (1991). Propanil: Toxicological Characteristics, Metabolism, and Biodegradation Potential in Soil. Journal of Environmental Quality, 20(2), 330-347. https://doi.org/https://doi.org/10.2134/jeq1991.00472425002000020002x
dc.relationProcop, G., Church, D., Hall, G., Janda, W., Koneman, E., Schreckenberger, P., & Woods, G. (2017). Koneman's Color Atlas & Textbook of Diagnostic Microbiology (Wolters Kluwer, Ed.; Seventh). Lippincott Williams & Wilkins.
dc.relationDecreto 1575 de 2007, Pub. L. No. 1575 de 2007, Diario Oficial 46623 (2007). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=30007
dc.relationRichardson, S. D., & Plewa, M. J. (2020). To regulate or not to regulate? What to do with more toxic disinfection by-products? Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.103939
dc.relationRichardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R., & DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. In Mutation Research - Reviews in Mutation Research (Vol. 636, Issues 1¿3, pp. 178-242). https://doi.org/10.1016/j.mrrev.2007.09.001
dc.relationRichardson, S. D., & Postigo, C. (2012). Drinking Water Disinfection By-products. In Handbook of Environmental Chemistry (Vol. 20, pp. 93-137). Springer Verlag. https://doi.org/10.1007/698_2011_125
dc.relationRodríguez-Padilla, C. (2022). Intoxicación por fosfuro de aluminio. Revista Medicina Legal de Costa Rica, 39(1).
dc.relationRojas Vásquez, D. A. (2021). Evaluación de encapsulados para el control de contaminantes emergentes en aguas [Fundación Universidad América]. https://hdl.handle.net/20.500.11839/8439
dc.relationRumlova, L., & Dolezalova, J. (2012). A new biological test utilising the yeast Saccharomyces cerevisiae for the rapid detection of toxic substances in water. Environmental Toxicology and Pharmacology, 33(3), 459-464. https://doi.org/10.1016/j.etap.2012.01.008
dc.relationRumlova, L., Dolezalova, J., Itoh, S., Gordon, B. A., Callan, P., & Bartram, J. (2011). Regulations and perspectives on disinfection by-products: Importance of estimating overall toxicity. Journal of Water Supply: Research and Technology - AQUA, 60(5), 261¿274. https://doi.org/10.2166/aqua.2011.068
dc.relationRunkle, J., Flocks, J., Economos, J., & Dunlop, A. L. (2017). A systematic review of Mancozeb as a reproductive and developmental hazard. In Environment International (Vol. 99, pp. 29-42). Elsevier Ltd. https://doi.org/10.1016/j.envint.2016.11.006
dc.relationSabarwal, A., Kumar, K., & Singh, R. P. (2018). Hazardous effects of chemical pesticides on human health¿Cancer and other associated disorders. In Environmental Toxicology and Pharmacology (Vol. 63, pp. 103-114). Elsevier B.V. https://doi.org/10.1016/j.etap.2018.08.018
dc.relationSalazar, K. D., Ustyugova, I. V., Brundage, K. M., Barnett, J. B., & Schafer, R. (2008). A review of the immunotoxicity of the pesticide 3,4-dichloropropionanalide. In Journal of Toxicology and Environmental Health - Part B: Critical Reviews (Vol. 11, Issue 8, pp. 630-645). https://doi.org/10.1080/10937400701724386
dc.relationSalazar Serna, D. M., & Peñuela, G. (2016). Effect of pre-oxidation with chlorine dioxide on the formation of trihalomethanes and haloacetic acids in a drinking water system. Revista Politécnica, 12(22), 9-20. https://revistas.elpoli.edu.co/index.php/pol/article/view/872/744
dc.relationSingh, Y., Joshi, S. C., Satyawali, V., & Gupta, A. (2014). Acute aluminium phosphide poisoning, what is new? The Egyptian Journal of Internal Medicine, 26(3), 99-103. https://doi.org/10.4103/1110-7782.145298
dc.relationThe Gene Ontology Consortium. (2008). The Gene Ontology project in 2008. Nucleic Acids Research, D440-D444. https://doi.org/https://doi.org/10.1093/nar/gkm883
dc.relationTkaczyk, A., Bownik, A., Dudka, J., Kowal, K., & ¿laska, B. (2021). Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Science of The Total Environment, 763, 143038. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143038
dc.relationTodorova, T. I., Parvanova, P. N., Çavu¿, H., Yovkova, M., Dimitrova, M., Mostafa, S., Mohafrash, M., Mossa, A.-T. H., Boyadzhiev, K. P., Dimitrov, M. D., & Chankova, S. G. (2020). Set of Tests for Chlorpyrifos Toxicity Screening. Ecologia Balkanica, 3, 227-238. http://eb.bio.uni-plovdiv.bg
dc.relationToro Vélez, A. F. (2021). Evaluación Integral de la Presencia de Micro-Contaminantes en la Cuenca Alta del Río Cauca. Universidad del Cauca.
dc.relationTsai, W. T. (2013). A review on environmental exposure and health risks of herbicide paraquat. In Toxicological and Environmental Chemistry (Vol. 95, Issue 2, pp. 197-206). https://doi.org/10.1080/02772248.2012.761999
dc.relationU.S. Environmental Protection Agency. (2018). 2018 Edition of the Drinking Water Standards and Health Advisories Tables. March.
dc.relationVarona-Uribe, M. E., Torres-Rey, C. H., Díaz-Criollo, S., Palma-Parra, R. M., Narváez, D. M., Carmona, S. P., Briceño, L., & Idrovo, A. J. (2016). Exposure to pesticide mixtures and DNA damage among rice field workers. Archives of Environmental and Occupational Health, 71(1), 3-9. https://doi.org/10.1080/19338244.2014.910489
dc.relationVilla, F. A. A., & Perez, F. J. M. (2021). Evaluación toxicológica del agua y los sedimentos en el embalse La Fe, Colombia. RIAA, 12(1), 10.
dc.relationWalteros Pinzón, C. D., Fernández Niño, M. Á., & Reyes Barrios, L. H. (2020). Caracterización de cepas de levadura colombiana Saccharomyces cerevisiae para su potencial uso en la producción de cerveza "Colombian Ale" [Universidad de Los Andes]. https://repositorio.uniandes.edu.co/bitstream/handle/1992/44911/u831193.pdf?sequence=1&isAllowed=y
dc.relationWorld Health Organization. (2020). Agua para consumo humano. Factsheet on Drinking Water. https://www.who.int/es/news-room/fact-sheets/detail/drinking-water
dc.relationWorld Health Organization. (2022). Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda (4th ed., Vol. 1, Issue 12).
dc.relationWysocki, R., & Tamás, M. J. (2010). How Saccharomyces cerevisiae copes with toxicmetals and metalloids. FEMS Microbiology Reviews, 34(6), 925-951. https://doi.org/10.1111/j.1574-6976.2010.00217.x
dc.relationYang, Y., Komaki, Y., Kimura, S. Y., Hu, H.-Y., Wagner, E. D., Mariñas, B. J., & Plewa, M. J. (2014). Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environmental Science & Technology, 48(20), 12362-12369. https://doi.org/10.1021/es503621e
dc.relationZadorozhnaya, O., Kirsanov, D., Buzhinsky, I., Tsarev, F., Abramova, N., Bratov, A., Muñoz, F. J., Ribó, J., Bori, J., Riva, M. C., & Legin, A. (2015). Water pollution monitoring by an artificial sensory system performing in terms of Vibrio fischeri bacteria. Sensors and Actuators B: Chemical, 207, 1069-1075. https://doi.org/https://doi.org/10.1016/j.snb.2014.08.056
dc.relationZhang, L. (2022). Machine learning for enumeration of cell colony forming units. Visual Computing for Industry, Biomedicine, and Art, 5(1). https://doi.org/10.1186/s42492-022-00122-3
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleMedición de sensibilidad de levadura Saccharomyces cerevisiae ante pesticidas y subproductos de desinfección de agua potable
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución