dc.contributorCifuentes de la Portilla, Christian Javier
dc.contributorCruz Jiménez, Juan Carlos
dc.contributorBayod López, Javier
dc.contributorMuñoz Camargo, Carolina
dc.contributorGIB
dc.contributorIBIOMECH
dc.contributorGINIB
dc.creatorNieto Salazar, Sebastián
dc.creatorGantiva Díaz, Mónica Rocío
dc.creatorHoyos Agudelo, María Alejandra
dc.date.accessioned2023-02-08T15:18:18Z
dc.date.accessioned2023-09-07T02:06:33Z
dc.date.available2023-02-08T15:18:18Z
dc.date.available2023-09-07T02:06:33Z
dc.date.created2023-02-08T15:18:18Z
dc.date.issued2023-01-18
dc.identifierhttp://hdl.handle.net/1992/64806
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728960
dc.description.abstractLa deformidad del pie plano adquirido adulto (DPPAA) es caracterizada por el colapso progresivo del arco medial longitudinal del pie. La literatura reciente muestra que las estructuras pasivas estabilizadoras del arco plantar son principalmente el ligamento spring (LS) y la fascia plantar (FP). En estadios tempranos de la DPPAA, los tratamientos se suelen enfocar en refuerzos del tendón tibial posterior, pues en varios escenarios, el LS en estos pacientes está lesionado. Algunos desarrollos actuales, reemplazan el LS con materiales artificiales. Sin embargo, su aplicación es costosa, compleja y limitada por las condiciones del fabricante. Este estudio propone un proceso novedoso de manufactura de una opción para reformzar el trabajo mecánico del LC. El proceso está basado en el método de electrohilado, a partir de policaprolactona (PCL, polímero sintético), gelatina tipo B (polímero natural) y óxido de grafeno (OG, encargado de conferir propiedades mecánicas), injertos para refuerzo de ligamento spring en cuatro materiales: PCL-GT, PCL GT-OG 1.0%, PCL-GT-OG 1.5%, PCL-GT-OG 2.0%. Se utilizó un tratamiento textil de torsionado para conferir mejores propiedades mecánicas al injerto, logrando propiedades mecánicas cercanas a las del LS humano. La caracterización físico-químicas mostró la presencia efectiva de todos los materiales después de la manufatura y tratamientos. Los injertos mostraron ser no hemolíticos, medianamente agregantes y no citotóxicos. El material fue evaluado usando un modelo computacional de pie humano en diferentes condiciones. Teniendo en cuenta las propiedades fisico-químicas de tejido, el injerto PCL-GT-OG 2.0% fue seleccionado para las simulaciones. Los injertos tuvieron una actuación destacada evitando la caída del arco plantar y de soporte pronador del retropié, lo que podría considerarlo como una alternativa para el refuerzo mecánico del arco plantar en estadíos tempranos de la DPPAA.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherMaestría en Ingeniería Biomédica
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Biomédica
dc.relationD. V. Flores, C. M. Gómez, M. F. Hernando, M. A. Davis, and M. N. Pathria, Adult acquired flatfoot deformity: Anatomy, biomechanics, staging, and imaging findings, RadioGraphics 39, 1437-1460 (2019)
dc.relationC. Y. K. Tang, K. H. Ng, and J. Lai, Adult flatfoot, BMJ p. m295 (2020)
dc.relationM. M. Abousayed, M. C. Alley, R. Shakked, and A. J. Rosenbaum, Adult-acquired flatfoot deformity, JBJS Rev. 5, e7-e7 (2017).
dc.relationJ. D. Orr and J. A. Nunley, Isolated spring ligament failure as a cause of adult-acquired flatfoot deformity, Foot &amp Ankle Int. 34, 818-823 (2013).
dc.relationP. F. Balen and C. A. Helms, Association of posterior tibial tendon injury with spring ligament injury, sinus tarsi abnormality, and plantar fasciitis on MR imaging, Am. J. Roentgenol. 176, 1137-1143 (2001)
dc.relationM. Tryfonidis, W. Jackson, R. Mansour, P. Cooke, J. Teh, S. Ostlere, and R. Sharp, Acquired adult flat foot due to isolated plantar calcaneonavicular (spring) ligament insufficiency with a normal tibialis posterior tendon, Foot Ankle Surg. 14, 89-95 (2008).
dc.relationJ. T. Deland, R. J. de Asla, I.-H. Sung, L. A. Ernberg, and H. G. Potter, Posterior tibial tendon insufficiency: Which ligaments are involved? Foot and Ankle Int. 26, 427-435 (2005).
dc.relationB. Steginsky and A. Vora, What to do with the spring ligament, Foot Ankle Clin. 22, 515-527 (2017)
dc.relationC. C.-D. la Portilla, C. Pasapula, R. Larrainzar-Garijo, and J. Bayod, Finite element analysis of secondary effect of midfoot fusions on the spring ligament in the management of adult acquired flatfoot, Clin. Biomech. 76, 105018 (2020).
dc.relationContents, Foot Ankle Clin. 26, vii-ix (2021)
dc.relationC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite element study, Foot Ankle Surg. 26, 412-420 (2020).
dc.relationC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite element study, Foot Ankle Surg. 26, 412-420 (2020).
dc.relationD. A. Brennan, A. A. Conte, G. Kanski, S. Turkula, X. Hu, M. T. Kleiner, and V. Beachley, Mechanical considerations for electrospun nanofibers in tendon and ligament repair, Adv. Healthc. Mater. 7, 1701277 (2018).
dc.relationH. M. Pauly, D. J. Kelly, K. C. Popat, N. A. Trujillo, N. J. Dunne, H. O. McCarthy, and T. L. H. Donahue, Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and and geometry, J. Mech. Behav. Biomed. Mater. 61, 258-270 (2016).
dc.relationE. Saatcioglu, S. Ulag, A. Sahin, B. K. Yilmaz, N. Ekren, A. T. Inan, Y. Palaci, C. B. Ustundag, and O. Gunduz, Design and fabrication of electrospun polycaprolactone/chitosan scaffolds for ligament regenera tion, Eur. Polym. J. 148, 110357 (2021)
dc.relationS. Ramakrishna, K. Fujihara, W.-E. Teo, T.-C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers (WORLD SCIENTIFIC,2005).
dc.relationD. Olvera, R. Schipani, B. N. Sathy, and D. J. Kelly, Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering, Biomed. Mater. 14, 035016 (2019).
dc.relationA. Kausar, Polymeric nanocomposite via electrospinning: Assessment of morphology, physical properties and applications, J. Plast. Film Sheeting 37, 70-92 (2020).
dc.relationC. C.-D. la Portilla, R. Larrainzar-Garijo, and J. Bayod, Biomechanical stress analysis of the main soft tissues associated with the development of adult acquired flatfoot deformity, Clin. Biomech. 61, 163-171 (2019).
dc.relationLarrainzar-Garijo, C. C. de la Portilla, B. Gutiérrez-Narvarte, E. Díez Nicolás, and J. Bayod, Efecto de la osteotomía medializante de cal cáneo sobre tejidos blandos de soporte del arco plantar: un estudio computacional, Revista Española de iaOrtopédica y ia 63, 155-163 (2019).
dc.relationA. A. Aldana and G. A. Abraham, Current advances in electrospun gelatin-based scaffolds for tissue engineering applications, Int. J. Pharm. 523, 441-453 (2017).
dc.relationA. T. Smith, A. M. LaChance, S. Zeng, B. Liu, and L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci. 1, 31-47 (2019).
dc.relationT. J. Chang, The foot and ankle (Lippincott Williams & Wilkins, 2005).
dc.relationD. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, Improved synthesis of graphene oxide, ACS Nano 4, 4806-4814 (2010).
dc.relationD. N. Céspedes-Valenzuela, S. Sánchez-Rentería, J. Cifuentes, M. Gantiva-Diaz, J. A. Serna, L. H. Reyes, C. Ostos, C. C.-D. la Portilla, C. Muñoz-Camargo, and J. C. Cruz, Preparation and characterization of an injectable and photo-responsive chitosan methacrylate/graphene oxide hydrogel: Potential applications in bone tissue adhesion and repair, Polymers 14, 126 (2021).
dc.relationB. Feng, H. Tu, H. Yuan, H. Peng, and Y. Zhang, Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL, Biomacromolecules 13, 3917-3925 (2012).
dc.relationC. E. Campiglio, N. C. Negrini, S. Farè, and L. Draghi, Cross-linking strategies for electrospun gelatin scaffolds, Materials 12, 2476 (2019).
dc.relationJ. Horakova, M. Klicova, J. Erben, A. Klapstova, V. Novotny, L. Behalek, and J. Chvojka, Impact of various sterilization and disinfection techniques on electrospun polycaprolactone, ACS Omega 5, 8885-8892 (2020).
dc.relationI. Standard, Iso 10993-4: Biological evaluation of medical devices part 4-selection of tests for interactions with blood, Int. Organ. for Standardization: Geneva, Switz. (2017)
dc.relationF. ASTM, 756-00. standard practice for assessment of hemolytic prop erties of materials, Philadelphia: Am. Soc. for Test. Mater. (2000).
dc.relationM. Azizi, M. Azimzadeh, M. Afzali, M. Alafzadeh, and S. H. Mirhosseini, Characterization and optimization of using calendula offlcinalis extract in fabrication of polycaprolactone-gelatin electrospun nanofibers for wound dressing applications, J. Adv. Mater. Process. 6, 34-46 (2018).
dc.relationM. Yang, X. Gao, Z. Shen, X. Shi, and Z. Lin, Gelatin-assisted con glutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration, RSC Adv. 9, 507-518 (2019).
dc.relationSudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, Effect of graphene oxide doping on superconducting properties of bulk MgBsub2/sub, Supercond. Sci. Technol. 26, 095008 (2013).
dc.relationD. Ickecan, R. Zan, and S. Nezir, Eco-friendly synthesis and characterization of reduced graphene oxide, J. Physics: Conf. Ser. 902, 012027 (2017).
dc.relationF. Rostami, E. Tamjid, and M. Behmanesh, Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells, Mater. Sci. Eng. C 115, 111102 (2020).
dc.relationR. Longo, M. Catauro, A. Sorrentino, and L. Guadagno, Thermal and mechanical characterization of complex electrospun systems based on polycaprolactone and gelatin, J. Therm. Analysis Calorim. 147, 5391-5399 (2022).
dc.relationF. Najafi and M. Rajabi, Thermal gravity analysis for the study of stability of graphene oxide-glycine nanocomposites, Int. Nano Lett. 5, 187-190 (2015)
dc.relationK. Ren, Y. Wang, T. Sun, W. Yue, and H. Zhang, Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes, Mater. Sci. Eng. C 78, 324-332 (2017).
dc.relationS. Siegler, J. Block, and C. D. Schneck, The mechanical characteristics of the collateral ligaments of the human ankle joint, Foot &amp Ankle 8, 234-242 (1988).
dc.relationX. Zhou, S. Fang, X. Leng, Z. Liu, and R. H. Baughman, The power of fiber twist, Accounts Chem. Res. 54, 2624-2636 (2021).
dc.relationP. Coimbra, P. Santos, P. Alves, S. P. Miguel, M. P. Carvalho, K. D. de Sá, I. Correia, and P. Ferreira, Coaxial electrospun PCL/gelatin-MA fibers as scaffolds for vascular tissue engineering, Colloids Surfaces B: Biointerfaces 159, 7-15 (2017).
dc.relationS. K. Bhatia and A. B. Yetter, Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements, Cell Biol. Toxicol. 24, 315-319 (2007).
dc.relationG. Jull, A. Moore, D. Falla, J. Lewis, C. McCarthy, and M. Sterling, Grieve's modern musculoskeletal physiotherapy (Elsevier Health Sci ences, 2015).
dc.relationN. M. Aboamera, A. Mohamed, A. Salama, T. Osman, and A. Khattab, Characterization and mechanical properties of electrospun cellulose acetate/graphene oxide composite nanofibers, Mech. Adv. Mater. Struct. 26, 765-769 (2017)
dc.relationC. Gonzalez-Martin, S. Pita-Fernandez, and S. Pertega-Diaz, Quality of life and functionality in patients with flatfoot, Updat. Manag. Foot Ankle Disord. London: Intech Open pp. 73-90 (2018)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleInjerto electrohilado como opción para aumentación en lesiones de ligamento spring
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución