dc.contributor | Hernández Pico, Yenny Rocio | |
dc.contributor | Valencia Gonzalez, Alejandra Catalina | |
dc.contributor | Laboratorio de nanomateriales | |
dc.creator | Guerrero Flórez, Jennifer Vanessa | |
dc.date.accessioned | 2023-08-01T18:47:39Z | |
dc.date.accessioned | 2023-09-07T02:06:08Z | |
dc.date.available | 2023-08-01T18:47:39Z | |
dc.date.available | 2023-09-07T02:06:08Z | |
dc.date.created | 2023-08-01T18:47:39Z | |
dc.date.issued | 2023-06-05 | |
dc.identifier | http://hdl.handle.net/1992/69032 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728955 | |
dc.description.abstract | El grafeno es un material bidimensional conformado por átomos de carbono, el cual tiene varias propiedades físicas, las cuales incluyen su flexibilidad, una gran rigidez mecánica y el poseer una alta conductividad tanto térmica como eléctrica. Debido a dichas características se ha utilizado el grafeno para la creación de distintos sensores y dispositivos en los últimos años. Una de las aplicaciones que se ha realizado es la creación de sensores acústicos basados en grafeno, los cuales se benefician del efecto piezorresistivo, el cual se manifiesta cuando sufre una deformación mecánica.
En el presente proyecto se presenta la fabricación de películas delgadas de grafeno con fines de detección acústica. Para la preparación de grafeno se utilizó el método de exfoliación electroquímica desarrollado en el laboratorio de nanomateriales de la Universidad de los Andes. Se exploraron las respuestas a una onda acústica para películas de distintos grosores, las cuales iban desde 3µm hasta 20µm. Se encontró que las películas fabricadas detectan señales acústicas de frecuencia constante, sin embargo, no pueden detectar ondas con varias frecuencias, como lo es una canción. | |
dc.description.abstract | Graphene is a two-dimensional material of carbon atoms, which holds several physical
properties, including its flexibility, great mechanical stiffness, and high thermal and electrical
conductivity. Because of these characteristics, graphene has been used for the creation of
different sensors and devices in recent years. One of the applications that has been developed
is the creation of acoustic sensors based on graphene, which benefit from the piezoresistive
effect, that is manifested by a mechanical deformation of the graphene.
Herein we present the fabrication of graphene thin films for acoustic detection. Graphene
was prepared by electrochemical exfoliation at the Nanomaterials lab at Universidad de los
Andes. Different responses to an acoustic wave for films of varying thicknesses were explored,
which ranged from 3µm to 20µm. We found that the fabricated films detect constant frequency
acoustic signals, however, they cannot detect waves with multiple frequencies, such as a song. | |
dc.language | spa | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Física | |
dc.relation | J. Li, Z. Liao, T. Liang, S. Zhang, B. Tang, X. Fu, G. Li, and Y. Huang, "High sensitivity,
fast response and anti-interference crack-based reduced graphene oxide strain sensor
for pig acoustic recognition," Computers and Electronics in Agriculture, vol. 200, p.
107267, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0168169922005804 | |
dc.relation | M. Rapisarda, G.-P. Malfense Fierro, and M. Meo, "Ultralight graphene oxide/polyvinyl
alcohol aerogel for broadband and tuneable acoustic properties," Scientific reports, vol. 11,
no. 1, pp. 1-10, 2021 | |
dc.relation | L.-Q. Tao, H. Tian, Y. Liu, Z.-Y. Ju, Y. Pang, Y.-Q. Chen, D.-Y. Wang, X.-G. Tian, J.-C. Yan,
N.-Q. Deng et al., "An intelligent artificial throat with sound-sensing ability based on laser
induced graphene," Nature communications, vol. 8, no. 1, p. 14579, 2017. | |
dc.relation | B. Lu, L. Lv, H. Yang, J. Gao, T. Xu, G. Sun, X. Jin, C. Shao, L. Qu, and J. Yang, "High
performance broadband acoustic absorption and sound sensing of a bubbled graphene
monolith," Journal of Materials Chemistry A, vol. 7, no. 18, pp. 11 423-11 429, 2019. | |
dc.relation | A. Dorri Moghadam, E. Omrani, P. L. Menezes, and P. K. Rohatgi, "Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon
nanotubes (cnts) and graphene - a review," Composites. Part B, Engineering, vol. 77, pp.
402-420, 2015. | |
dc.relation | G. Cocco, E. Cadelano, and L. Colombo, "Gap opening in graphene by shear strain,"
Physical review. B, Condensed matter and materials physics, vol. 81, no. 24, 2010. | |
dc.relation | S. Miryala, V. Tenace, A. Calimera, E. Macii, and M. Poncino, "Ultra-low power
circuits using graphene pn junctions and adiabatic computing," Microprocessors
and Microsystems, vol. 39, no. 8, pp. 962-972, 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0141933115000708 | |
dc.relation | I. Roy, G. Sarkar, S. Mondal, D. Rana, A. Bhattacharyya, N. R. Saha, A. Adhikari, D. Khastgir,
S. Chattopadhyay, and D. Chattopadhyay, "Synthesis and characterization of graphene
from waste dry cell battery for electronic applications," RSC advances, vol. 6, no. 13, pp.
10 557-10 564, 2016. | |
dc.relation | F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi, and H. Zhang, "Recent advances in strain-induced
piezoelectric and piezoresistive effect-engineered 2d semiconductors for adaptive elec tronics and optoelectronics," Nano-Micro Letters, vol. 12, pp. 1-44, 2020. | |
dc.relation | Q. Zheng, J.-h. Lee, X. Shen, X. Chen, and J.-K. Kim, "Graphene-based wearable piezoresistive physical sensors," Materials today (Kidlington, England), vol. 36, pp. 158-179,
2020. | |
dc.relation | M. Mamouei, K. Budidha, N. Baishya, M. Qassem, and P. Kyriacou, "An empirical investigation of deviations from the beerlambert law in optical estimation of lactate," Scientific
Reports, vol. 11, no. 1, pp. 1-9, 2021. | |
dc.relation | J. Myers, B. Curtis, and W. Curtis, "Improving accuracy of cell and chromophore concentration measurements using optical density," BMC biophysics, vol. 6, p. 4, 04 2013. | |
dc.relation | M. J. Epstein, Sound and noise : a listener's guide to everyday life. Montreal y Kingston:
McGill-Queen's University Press, 2020. | |
dc.relation | D. Fink, "A new definition of noise: noise is unwanted and/or harmful sound. noise is the
new "secondhand smoke"." in Proceedings of Meetings on Acoustics 178ASA, vol. 39, no. 1.
Acoustical Society of America, 2019, p. 050002. | |
dc.relation | R. D. Blevins, Formulas for dynamics, acoustics and vibration, ser. Wiley Series in Acoustics
Noise and Vibration. Chichester, [England]: Wiley, 2016 - 2016. | |
dc.relation | Springer Handbook of Acoustics, 2nd ed., ser. Springer Handbooks. New York, NY: Springer
New York, 2014. | |
dc.relation | B. Carter, Op amps for everyone, fifth edition. ed. Oxford, [England] ;: Newnes, 2018 -
2018. | |
dc.relation | E. Santos, M. Khosravy, M. A. Lima, A. S. Cerqueira, C. A. Duque, and A. Yona, "High
accuracy power quality evaluation under a colored noisy condition by filter bank esprit,"
Electronics, vol. 8, no. 11, p. 1259, 2019. | |
dc.relation | C. Bujoreanu, F. Nedeff, M. Benchea, and M. Agop, "Experimental and theoretical
considerations on sound absorption performance of waste materials including the
effect of backing plates," Applied Acoustics, vol. 119, pp. 88-93, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003682X1630603X | |
dc.relation | M. Rahimabady, E. C. Statharas, K. Yao, M. Sharifzadeh Mirshekarloo, S. Chen, and F. E. H.
Tay, "Hybrid local piezoelectric and conductive functions for high performance airborne
sound absorption," Applied Physics Letters, vol. 111, no. 24, p. 241601, 2017. | |
dc.relation | J. Rico, M. Castaño-Soto, N. Lopez-Arango, and Y. Hernandez, "Influence of c=o groups
on the optical extinction coefficient of graphene exfoliated in liquid phase," Journal of
physics. Condensed matter, vol. 34, no. 10, pp. 105 701-, 2022. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Preparación de películas delgadas de grafeno para aplicaciones como sensor acústico | |
dc.type | Trabajo de grado - Pregrado | |