dc.contributorVives Flórez, Martha Josefina
dc.contributorCelis Ramírez, Adriana Marcela
dc.contributorRodríguez Villamizar, Fernando
dc.contributorCentro de Investigaciones Microbiológicas - CIMIC
dc.creatorHernández Villamizar, Santiago
dc.date.accessioned2023-02-03T15:24:46Z
dc.date.accessioned2023-09-07T02:06:07Z
dc.date.available2023-02-03T15:24:46Z
dc.date.available2023-09-07T02:06:07Z
dc.date.created2023-02-03T15:24:46Z
dc.date.issued2023-02-02
dc.identifierhttp://hdl.handle.net/1992/64595
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728954
dc.description.abstractLa fagoterapia es una alternativa viable para controlar infecciones bacterianas, sin embargo, entender como la bacterias y fagos interactúan dependiendo del ambiente es crucial para tener un tratamiento efectivo. Muchas de las aplicaciones de fagos son realizadas sobre ambientes anaerobios (intestino, heridas), entonces entender el efecto de la falta o limitación de oxígeno en la interacción fago-hospedero se hace necesaria. Desde 1975 no se han publicado investigaciones para elucidar el efecto de la ausencia de oxígeno en el proceso de infección del fago. En este estudio nosotros reportamos este efecto en un modelo Salmonella sp.-fago, dada su importancia como patógeno y contaminante bacteriano en ambiente anaerobios, y el potencial de la fagoterapia para controlarla. Encontramos que el ciclo de replicación viral, la reducción de la población bacteriana por unidad de tiempo, y el desarrollo de resistencia son influenciadas por la anaerobiosis de la siguiente manera: a) el fago es afectado en la longitud de su ciclo de vida y en su capacidad para controlar la población bacteriana; b) se observó que el tamaño celular bacteriano está asociado a la cantidad de proteína FtsZ y que se altera la aparición de resistencia en contra del fago. Asimismo, los resultados de los análisis transcriptómicos sugieren que la infección en condiciones aeróbicas induce metabolismo anaerobio, específicamente nitrato reducción, y hay subexpresión de genes asociados con respiración aeróbica en la bacteria. En la infección anaeróbica no se observó cambios al metabolismo de generación de energía usado por la bacteria en crecimiento anaeróbico, pero sí se evidenció aumento en la transcripción de genes relacionados con el transporte de aceptores de electrones usados en anaerobiosis. Independiente la condición de oxígeno, los resultados mostraron que la mayoría de los genes con expresión diferencial en la infección fueron aquellos clasificados en la categoría de función desconocida o no pudieron ser anotados. Los resultados en conjunto dan un panorama de cómo la ausencia de oxígeno pude afectar la interacción fago-hospedero, y cuyas consecuencias deberían ser consideradas al momento de usar los fagos biotecnologicamente.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ciencias - Biología
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Ciencias Biológicas
dc.relationAbedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human infections. Bacteriophage 1:66-85.
dc.relationEttwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M. 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543-8.
dc.relationTeske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriology 176:6623-30.
dc.relationBarton LL, McLean RJ. 2019. Environmental Microbiology and Microbial Ecology. John Wiley & Sons, West Sussex, UK.
dc.relationConrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609-40.
dc.relationFriedman ES, Bittinger K, Esipova TV, Hou L, Chau L, Jiang J, Mesaros C, Lund PJ, Liang X, FitzGerald GA, Goulian M, Lee D, Garcia BA, Blair IA, Vinogradov SA, Wu GD. 2018. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A 115:4170-4175.
dc.relationDoré J, Corthier G. 2010. Le microbiote intestinal humain. Gastroentérologie clinique et biologique 34:7-16.
dc.relationMills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. 2013. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4:4-16.
dc.relationManrique P, Dills M, Young MJ. 2017. The Human Gut Phage Community and Its Implications for Health and Disease. Viruses 9.
dc.relationNicastro J, Wong S, Khazaei Z, Lam P, Blay J, Slavcev RA. 2016. Bacteriophage Applications-Historical Perspective and Future Potential. Springer.
dc.relationEllis EL, Delbrück M. 1939. The Growth of bacteriophage. J Gen Physiol 22:365-84.
dc.relationKutter E, Sulakvelidze A. 2004. Bacteriophages: Biology and Applications. CRC Press, Florida, FL, USA.
dc.relationAckermann H.W. DM. 1987. Viruses of Prokaryotes. CRC Press, Boca Raton, FL.
dc.relationClokie MRJ, Kropinski AM. 2009. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Humana Press, New York, NY, USA.
dc.relationDion MB, Oechslin F, Moineau S. 2020. Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18:125-138.
dc.relationBatinovic S, Wassef F, Knowler SA, Rice DT, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR. 2019. Bacteriophages in natural and artificial environments. Pathogens 8:100.
dc.relationGrose JH, Casjens SR. 2014. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468:421-443.
dc.relationSeal BS. 2013. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci 92:526-33.
dc.relationMiller RW, Skinner EJ, Sulakvelidze A, Mathis GF, Hofacre CL. 2010. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Dis 54:33-40.
dc.relationMorales CA, Oakley BB, Garrish JK, Siragusa GR, Ard MB, Seal BS. 2012. Complete genome sequence of the podoviral bacteriophage phi CP24R, which is virulent for Clostridium perfringens. Arch Virol 157:769-72.
dc.relationLawson PA, Citron DM, Tyrrell KL, Finegold SM. 2016. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe 40:95-9.
dc.relationPhothichaisri W, Ounjai P, Phetruen T, Janvilisri T, Khunrae P, Singhakaew S, Wangroongsarb P, Chankhamhaengdecha S. 2018. Characterization of Bacteriophages Infecting Clinical Isolates of Clostridium difficile. Front Microbiol 9:1701.
dc.relationHargreaves KR, Clokie MR. 2014. Clostridium difficile phages: still difficult? Front Microbiol 5:184.
dc.relationSeal BS, Oakley BB, Morales CA, Svetoch EA, Siragusa GR, Garrish JK, Simmons M, Volozhantsev NV. 2012. Bacteriophages of Clostridium perfringens. INTECH Open Access Publisher, London, UK.
dc.relationFortier LC. 2018. Bacteriophages Contribute to Shaping. Front Microbiol 9:2033.
dc.relationHargreaves KR, Clokie MR. 2015. A Taxonomic Review of Clostridium difficile Phages and Proposal of a Novel Genus, "Phimmp04likevirus". Viruses 7:2534-41.
dc.relationNale JY, Spencer J, Hargreaves KR, Buckley AM, Trzepinski P, Douce GR, Clokie MR. 2016. Bacteriophage Combinations Significantly Reduce Clostridium difficile Growth In Vitro and Proliferation In Vivo. Antimicrob Agents Chemother 60:968-81.
dc.relationMahendra A. 2016. Development of a phage-based diagnostic test for the identification of Clostridium difficile. Doctor of Philosophy in Chemical Engineering. Loughborough University, London.
dc.relationInoue K, Iida H. 1968. Bacteriophages of Clostridium botulinum. J Virol 2:537-40.
dc.relationRoseman D, Richardson RL. 1969. Isolation of bacteriophage for Clostridium tetani. J Virol 3:350.
dc.relationPrescott LM, Altenbern RA. 1967. Detection of bacteriophages from two strains of Clostridium tetani. J Virol 1:1085-6.
dc.relationTartera C, Jofre J. 1987. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters. Appl Environ Microbiol 53:1632-7.
dc.relationPayan A, Ebdon J, Taylor H, Gantzer C, Ottoson J, Papageorgiou GT, Blanch AR, Lucena F, Jofre J, Muniesa M. 2005. Method for isolation of Bacteroides bacteriophage host strains suitable for tracking sources of fecal pollution in water. Appl Environ Microbiol 71:5659-62.
dc.relationArmon R, Kott Y. 1995. Distribution comparison between coliphages and phages of anaerobic bacteria (Bacteroides fragilis) in water sources, and their reliability as fecal pollution indicators in drinking water. Water Science and Technology 31:215-222.
dc.relationTartera C, Lucena F, Jofre J. 1989. Human origin of Bacteroides fragilis bacteriophages present in the environment. Appl Environ Microbiol 55:2696-701.
dc.relationJofre J, Blanch AR, Lucena F, Muniesa M. 2014. Bacteriophages infecting Bacteroides as a marker for microbial source tracking. Water Res 55:1-11.
dc.relationBooth SJ, Van Tassell RL, Johnson JL, Wilkins TD. 1979. Bacteriophages of Bacteroides. Rev Infect Dis 1:325-36.
dc.relationVijayavel K, Fujioka R, Ebdon J, Taylor H. 2010. Isolation and characterization of Bacteroides host strain HB-73 used to detect sewage specific phages in Hawaii. Water research 44:3714-3724.
dc.relationHawkins SA, Layton AC, Ripp S, Williams D, Sayler GS. 2008. Genome sequence of the Bacteroides fragilis phage ATCC 51477-B1. Virology Journal 5:97.
dc.relationPark GW, Ng TFF, Freeland AL, Marconi VC, Boom JA, Staat MA, Montmayeur AM, Browne H, Narayanan J, Payne DC. 2020. CrAssphage as a Novel Tool to Detect Human Fecal Contamination on Environmental Surfaces and Hands. Emerging Infectious Diseases 26:1731.
dc.relationKoonin EV, Yutin N. 2020. The crAss-like Phage Group: How Metagenomics Reshaped the Human Virome. Trends in Microbiology.
dc.relationShkoporov AN, Khokhlova EV, Fitzgerald CB, Stockdale SR, Draper LA, Ross RP, Hill C. 2018. phi CrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nature communications 9:1-8.
dc.relationHandley J, Adams V, Akagi JM. 1973. Morphology of bacteriophage-like particles from Desulfovibrio vulgaris. J Bacteriol 115:1205-7.
dc.relationRapp BJ, Wall JD. 1987. Genetic transfer in Desulfovibrio desulfuricans. Proc Natl Acad Sci U S A 84:9128-30.
dc.relationKamimura K, Araki M. 1989. Isolation and Characterization of a Bacteriophage Lytic for Desulfovibrio salexigens, a Salt-Requiring, Sulfate-Reducing Bacterium. Appl Environ Microbiol 55:645-8.
dc.relationWalker CB, Stolyar SS, Pinel N, Yen HC, He Z, Zhou J, Wall JD, Stahl DA. 2006. Recovery of temperate Desulfovibrio vulgaris bacteriophage using a novel host strain. Environ Microbiol 8:1950-9.
dc.relationEydal HS, Jägevall S, Hermansson M, Pedersen K. 2009. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J 3:1139-47.
dc.relationHeidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. 2004. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554-9.
dc.relationAndrews DM, Gharbia SE, Shah HN. 1997. Characterization of a novel bacteriophage in Fusobacterium varium. Clin Infect Dis 25 Suppl 2:S287-8.
dc.relationMachuca P, Daille L, Vinés E, Berrocal L, Bittner M. 2010. Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol 76:7243-50.
dc.relationTylenda CA, Calvert C, Kolenbrander PE, Tylenda A. 1985. Isolation of Actinomyces bacteriophage from human dental plaque. Infect Immun 49:1-6.
dc.relationDelisle AL, Nauman RK, Minah GE. 1978. Isolation of a bacteriophage for Actinomyces viscosus. Infect Immun 20:303-6.
dc.relationHolmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B, Wilkins MJ, Wrighton KC, Thompson CA, Comolli LR, Lovley DR. 2015. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. ISME J 9:333-46.
dc.relationXu Y, Liu Y, Pei J, Yao S, Cheng C. 2015. Bacteriophage therapy against Enterobacteriaceae. Virol Sin 30:11-8.
dc.relationBrüssow H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151:2133-40.
dc.relationSharma VK, Akavaram S, Schaut RG, Bayles DO. 2019. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 20:196.
dc.relationShaaban S, Cowley LA, McAteer SP, Jenkins C, Dallman TJ, Bono JL, Gally DL. 2016. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic. Microb Genom 2:e000096.
dc.relationD'Orazio M, Scotti R, Nicolini L, Cervoni L, Rotilio G, Battistoni A, Gabbianelli R. 2008. Regulatory and structural properties differentiating the chromosomal and the bacteriophage-associated Escherichia coli O157:H7 Cu, Zn superoxide dismutases. BMC Microbiol 8:166.
dc.relationClavijo V, Baquero D, Hernandez S, Farfan JC, Arias J, Arévalo A, Donado-Godoy P, Vives-Flores M. 2019. Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult Sci 98:5054-5063.
dc.relationPlaza N, Castillo D, Pérez-Reytor D, Higuera G, García K, Bastías R. 2018. Bacteriophages in the control of pathogenic vibrios. Electronic Journal of Biotechnology 31:24-33.
dc.relationYen M, Cairns LS, Camilli A. 2017. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nature communications 8:1-7.
dc.relationJaiswal A, Koley H, Ghosh A, Palit A, Sarkar B. 2013. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes and Infection 15:152-156.
dc.relationPayne M, Oakey J, Owens L. 2004. The ability of two different Vibrio spp. bacteriophages to infect Vibrio harveyi, Vibrio cholerae and Vibrio mimicus. Journal of applied microbiology 97:663-672.
dc.relationKazmierczak Z, Górski A, Dabrowska K. 2014. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 6:2551-70.
dc.relationAbatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AF, Carrasco S, Suárez CA, Morbidoni HR. 2017. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS One 12:e0181671.
dc.relationDeghorain M, Van Melderen L. 2012. The Staphylococci phages family: an overview. Viruses 4:3316-35.
dc.relationGillis A, Mahillon J. 2014. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 6:2623-72.
dc.relationGrose JH, Jensen GL, Burnett SH, Breakwell DP. 2014. Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 15:855.
dc.relationVillion M, Moineau S. 2009. Bacteriophages of lactobacillus. Front Biosci (Landmark Ed) 14:1661-83.
dc.relationMahony J, Bottacini F, van Sinderen D, Fitzgerald GF. 2014. Progress in lactic acid bacterial phage research. Microb Cell Fact 13 Suppl 1:S1.
dc.relationPrada-Peñaranda C, Salazar M, Güiza L, Pérez MI, Leidy C, Vives-Florez MJ. 2018. Phage preparation FBL1 prevents Bacillus licheniformis biofilm, bacterium responsible for the mortality of the Pacific White Shrimp Litopenaeus vannamei. Aquaculture 484:160-167.
dc.relationRichards GP. 2014. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4:e975540.
dc.relationRakhuba DV, Kolomiets EI, Dey ES, Novik GI. 2010. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 59:145-55.
dc.relationYoung R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430-81.
dc.relationDunne M, Hupfeld M, Klumpp J, Loessner MJ. 2018. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. Viruses 10.
dc.relationLi X, Gerlach D, Du X, Larsen J, Stegger M, Kühner P, Peschel A, Xia G, Winstel V. 2015. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5:17219.
dc.relationDaugelavicius R, Cvirkaite V, Gaidelyte A, Bakiene E, Gabrenaite-Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double-stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol 79:5017-26.
dc.relationBaptista C, Santos MA, São-José C. 2008. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J Bacteriol 190:4989-96.
dc.relationVinga I, Baptista C, Auzat I, Petipas I, Lurz R, Tavares P, Santos MA, São-José C. 2012. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 83:289-303.
dc.relationGhose C, Euler CW. 2020. Gram-Negative Bacterial Lysins. Antibiotics (Basel) 9.
dc.relationZagotta MT, Wilson DB. 1990. Oligomerization of the bacteriophage lambda S protein in the inner membrane of Escherichia coli. J Bacteriol 172:912-21.
dc.relationBläsi U, Henrich B, Lubitz W. 1985. Lysis of Escherichia coli by cloned phi X174 gene E depends on its expression. J Gen Microbiol 131:1107-14.
dc.relationGoh S, Riley TV, Chang BJ. 2005. Isolation and characterization of temperate bacteriophages of Clostridium difficile. Appl Environ Microbiol 71:1079-83.
dc.relationSekulovic O, Garneau JR, Néron A, Fortier LC. 2014. Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ Microbiol 80:2555-63.
dc.relationSekulovic O, Fortier LC. 2015. Global transcriptional response of Clostridium difficile carrying the CD38 prophage. Appl Environ Microbiol 81:1364-74.
dc.relationGovind R, Vediyappan G, Rolfe RD, Dupuy B, Fralick JA. 2009. Bacteriophage-mediated toxin gene regulation in Clostridium difficile. J Virol 83:12037-45.
dc.relationSekulovic O, Meessen-Pinard M, Fortier L-C. 2011. Prophage-Stimulated Toxin Production in Clostridium difficile NAP1/027 Lysogens. Journal of Bacteriology 193:2726-2734.
dc.relationZimmer M, Scherer S, Loessner MJ. 2002. Genomic Analysis of Clostridium perfringens Bacteriophage phi 3626, Which Integrates into and Possibly Affects Sporulation. Journal of Bacteriology 184:4359-4368.
dc.relationStewart AW, Johnson MG. 1977. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9. J Gen Microbiol 103:45-50.
dc.relationKlumpp J, Fouts DE, Sozhamannan S. 2013. Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct Genomics 12:354-65.
dc.relationHinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. 2005. Transcriptional takeover by sigma appropriation: remodelling of the sigma70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology 151:1729-40.
dc.relationPoranen MM, Ravantti JJ, Grahn AM, Gupta R, Auvinen P, Bamford DH. 2006. Global changes in cellular gene expression during bacteriophage PRD1 infection. J Virol 80:8081-8.
dc.relationLeskinen K, Blasdel BG, Lavigne R, Skurnik M. 2016. RNA-Sequencing Reveals the Progression of Phage-Host Interactions between phi R1-37 and Yersinia enterocolitica. Viruses 8:111.
dc.relationSacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. 2018. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses 10.
dc.relationVeses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE. 2015. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Environ Microbiol 81:8118-25.
dc.relationHutchison CA, Sinsheimer RL. 1971. Requirement of protein synthesis for bacteriophage phi X174 superinfection exclusion. J Virol 8:121-4.
dc.relationKliem M, Dreiseikelmann B. 1989. The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 171:350-5.
dc.relationHernández S. 2018. Comportamiento de bacteriófagos en sistemas anóxicos: Desarrollo de la plataforma de trabajo para su análisis y evaluación en dos modelos de trabajo. Magister en Ciencias Biológicas area Microbiología. Universidad de los Andes, Bogotá, Colombia.
dc.relationSwift BM, Gerrard ZE, Huxley JN, Rees CE. 2014. Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria. PLoS One 9:e106690.
dc.relationShin H, Lee JH, Kim H, Choi Y, Heu S, Ryu S. 2012. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS One 7:e43392.
dc.relationRoth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137-81.
dc.relationAndersson D. 1995. Kinetics of cobalamin repression of the cob operon in Salmonella typhimurium. FEMS Microbiol Lett 125:89-93.
dc.relationKadner RJ. 1978. Repression of synthesis of the vitamin B12 receptor in Escherichia coli. J Bacteriol 136:1050-7.
dc.relationKöster W, Gudmundsdottir A, Lundrigan MD, Seiffert A, Kadner RJ. 1991. Deletions or duplications in the BtuB protein affect its level in the outer membrane of Escherichia coli. J Bacteriol 173:5639-47.
dc.relationJeter RM, Olivera BM, Roth JR. 1984. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol 159:206-13.
dc.relationEvans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. 2011. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 11:58.
dc.relationFink RC, Evans MR, Porwollik S, Vazquez-Torres A, Jones-Carson J, Troxell B, Libby SJ, McClelland M, Hassan HM. 2007. FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 189:2262-73.
dc.relationSpiro S, Guest JR. 1991. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci 16:310-4.
dc.relationHadjipetrou LP, Stouthamer AH. 1965. Energy production during nitrate respiration by Aerobacter aerogenes. J Gen Microbiol 38:29-34.
dc.relationSpangler WJ, Gilmour CM. 1966. Biochemistry of nitrate respiration in Pseudomonas stutzeri. I. Aerobic and nitrate respiration routes of carbohydrate catabolism. J Bacteriol 91:245-50.
dc.relationZhao X, Shen M, Jiang X, Shen W, Zhong Q, Yang Y, Tan Y, Agnello M, He X, Hu F, Le S. 2017. Transcriptomic and Metabolomics Profiling of Phage-Host Interactions between Phage PaP1 and. Front Microbiol 8:548.
dc.relationDe Smet J, Zimmermann M, Kogadeeva M, Ceyssens PJ, Vermaelen W, Blasdel B, Bin Jang H, Sauer U, Lavigne R. 2016. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection. ISME J 10:1823-35.
dc.relationFalkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320:1034-9.
dc.relationMirzaei MK, Maurice CF. 2017. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 15:397-408.
dc.relationMills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. 2013. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 4:4-16.
dc.relationZhang J, Gao Q, Zhang Q, Wang T, Yue H, Wu L, Shi J, Qin Z, Zhou J, Zuo J, Yang Y. 2017. Bacteriophage-prokaryote dynamics and interaction within anaerobic digestion processes across time and space. Microbiome 5:57.
dc.relationSime-Ngando T. 2014. Environmental bacteriophages: viruses of microbes in aquatic ecosystems. Front Microbiol 5:355.
dc.relationHargreaves KR, Clokie MR. 2014. Clostridium difficile phages: still difficult? Front Microbiol 5:184.
dc.relationWei Y, Miller CG. 1999. Characterization of a group of anaerobically induced, fnr-dependent genes of Salmonella typhimurium. J Bacteriol 181:6092-7.
dc.relationBai J, Jeon B, Ryu S. 2019. Effective inhibition of Salmonella Typhimurium in fresh produce by a phage cocktail targeting multiple host receptors. Food microbiology 77:52-60.
dc.relationHolguín AV, Cárdenas P, Prada-Peñaranda C, Rabelo Leite L, Buitrago C, Clavijo V, Oliveira G, Leekitcharoenphon P, Møller Aarestrup F, Vives MJ. 2019. Host Resistance, Genomics and Population Dynamics in a Salmonella Enteritidis and Phage System. Viruses 11:188.
dc.relationStone E, Campbell K, Grant I, McAuliffe O. 2019. Understanding and exploiting phage-host interactions. Viruses 11:567.
dc.relationEtz H, Minh DB, Schellack C, Nagy E, Meinke A. 2001. Bacterial phage receptors, versatile tools for display of polypeptides on the cell surface. Journal of bacteriology 183:6924-6935.
dc.relationChien AC, Hill NS, Levin PA. 2012. Cell size control in bacteria. Curr Biol 22:R340-9.
dc.relationSchaechter M, Maaloe O, Kjeldgaard NO. 1958. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19:592-606.
dc.relationWard Jr JE, Lutkenhaus J. 1985. Overproduction of FtsZ induces minicell formation in E. coli. Cell 42:941-949.
dc.relationPalacios P, Vicente M, Sánchez M. 1996. Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Molecular microbiology 20:1093-1098.
dc.relationAndes Udl. 25 november 2015. Composition Comprising Bacteriophage for Reducing, Eliminating and/or Preventing Salmonella Enteritidis, Salmonella Typhimurium and Salmonella Paratyphi B. Colombia.
dc.relationKropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69-76.
dc.relationHyman P, Abedon ST (ed). 2009. Practical Methods for Determining Phage Growth Parameters. Bacteriophages: Methods and Protocols. Humana Press, New York, NY, USA.
dc.relationZeitler AF, Gerrer KH, Haas R, Jiménez-Soto LF. 2016. Optimized semi-quantitative blot analysis in infection assays using the Stain-Free technology. J Microbiol Methods 126:38-41.
dc.relationRice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276-7.
dc.relationS. A. 2010. A quality control tool for high throughput sequence data.
dc.relationBolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
dc.relationHuang X, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res 9:868-77.
dc.relationEdgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.
dc.relationPage AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, Harris SR. 2016. SNP sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2:e000056.
dc.relationBradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-5.
dc.relationWang C, Nie T, Lin F, Connerton IF, Lu Z, Zhou S, Hang H. 2019. Resistance mechanisms adopted by a Salmonella Typhimurium mutant against bacteriophage. Virus research 273:197759.
dc.relationPfaffl MW. 2006. Relative quantification. Real-time PCR 63:63-82.
dc.relationFlint JA, Van Duynhoven YT, Angulo FJ, DeLong SM, Braun P, Kirk M, Scallan E, Fitzgerald M, Adak GK, Sockett P, Ellis A, Hall G, Gargouri N, Walke H, Braam P. 2005. Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: an international review. Clin Infect Dis 41:698-704.
dc.relationThiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Bäumler AJ. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci U S A 108:17480-5.
dc.relationWei S, Morrison M, Yu Z. 2013. Bacterial census of poultry intestinal microbiome. Poult Sci 92:671-83.
dc.relationSillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. 2004. Pseudomonas fluorescens infection by bacteriophage PhiS1: the influence of temperature, host growth phase and media. FEMS Microbiol Lett 241:13-20.
dc.relationLoui C, Chang AC, Lu S. 2009. Role of the ArcAB two-component system in the resistance of Escherichia colito reactive oxygen stress. BMC Microbiology 9:183.
dc.relationLu S, Killoran PB, Fang FC, Riley LW. 2002. The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun 70:451-61.
dc.relationMcConnell M, Wright A. 1975. An anaerobic technique for increasing bacteriophage plaque size. Virology 65:588-90.
dc.relationEriksen RS, Mitarai N, Sneppen K. 2020. Sustainability of spatially distributed bacteria-phage systems. Sci Rep 10:3154.
dc.relationOechslin F. 2018. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 10.
dc.relationKim JW, Dutta V, Elhanafi D, Lee S, Osborne JA, Kathariou S. 2012. A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 78:1995-2004.
dc.relationDegnan PH, Taga ME, Goodman AL. 2014. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769-778.
dc.relationBalabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. 2021. Microbial and Genetic Resources for Cobalamin (Vitamin B12) Biosynthesis: From Ecosystems to Industrial Biotechnology. Int J Mol Sci 22.
dc.relationPrice-Carter M, Tingey J, Bobik TA, Roth JR. 2001. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463-75.
dc.relationRagsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. Biochim Biophys Acta 1784:1873-98.
dc.relationNou X, Kadner RJ. 1998. Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol 180:6719-28.
dc.relationVitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. 2003. Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA 9:1084-97.
dc.relationRodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. Journal of Biological Chemistry 278:41148-41159.
dc.relationLi T, Zhang Y, Dong K, Kuo CJ, Li C, Zhu YQ, Qin J, Li QT, Chang YF, Guo X, Zhu Y. 2020. Isolation and Characterization of the Novel Phage JD032 and Global Transcriptomic Response during JD032 Infection of Clostridioides difficile Ribotype 078. mSystems 5.
dc.relationSekulovic O, Fortier LC. 2015. Global transcriptional response of Clostridium difficile carrying the CD38 prophage. Appl Environ Microbiol 81:1364-74.
dc.relationYang Z, Yin S, Li G, Wang J, Huang G, Jiang B, You B, Gong Y, Zhang C, Luo X, Peng Y, Zhao X. 2019. Global Transcriptomic Analysis of the Interactions between Phage phi Abp1 and Extensively Drug-Resistant Acinetobacter baumannii. mSystems 4.
dc.relationChevallereau A, Blasdel BG, De Smet J, Monot M, Zimmermann M, Kogadeeva M, Sauer U, Jorth P, Whiteley M, Debarbieux L, Lavigne R. 2016. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa. PLoS Genet 12:e1006134.
dc.relationCrummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBH. 2016. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499:219-229.
dc.relationBrettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365.
dc.relationCantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol 38:5825-5829.
dc.relationSteinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 35:1026-1028.
dc.relationDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15-21.
dc.relationAnders S, Pyl PT, Huber W. 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166-9.
dc.relationLove MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.
dc.relationJung JU, Gutierrez C, Villarejo MR. 1989. Sequence of an osmotically inducible lipoprotein gene. J Bacteriol 171:511-20.
dc.relationCotter PA, Chepuri V, Gennis RB, Gunsalus RP. 1990. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J Bacteriol 172:6333-8.
dc.relationVanOrsdel CE, Bhatt S, Allen RJ, Brenner EP, Hobson JJ, Jamil A, Haynes BM, Genson AM, Hemm MR. 2013. The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity. J Bacteriol 195:3640-50.
dc.relationDubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P. 2003. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185:4450-60.
dc.relationGenschik P, Drabikowski K, Filipowicz W. 1998. Characterization of the Escherichia coli RNA 3'-terminal phosphate cyclase and its sigma54-regulated operon. J Biol Chem 273:25516-26.
dc.relationDas U, Shuman S. 2013. 2'-Phosphate cyclase activity of RtcA: a potential rationale for the operon organization of RtcA with an RNA repair ligase RtcB in Escherichia coli and other bacterial taxa. RNA 19:1355-62.
dc.relationArmalyte J, Jurenaite M, Beinoravici¿te G, Teiserskas J, Suziedeliene E. 2012. Characterization of Escherichia coli dinJ-yafQ toxin-antitoxin system using insights from mutagenesis data. J Bacteriol 194:1523-32.
dc.relationFarr SB, Kogoma T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561-85.
dc.relationYan D, Ikeda TP, Shauger AE, Kustu S. 1996. Glutamate is required to maintain the steady-state potassium pool in Salmonella typhimurium. Proc Natl Acad Sci U S A 93:6527-31.
dc.relationEpstein W. 2003. The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293-320.
dc.relationCairney J, Booth IR, Higgins CF. 1985. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J Bacteriol 164:1224-32.
dc.relationKurasz JE, Hartman CE, Samuels DJ, Mohanty BK, Deleveaux A, Mrázek J, Karls AC. 2018. Genotoxic, Metabolic, and Oxidative Stresses Regulate the RNA Repair Operon of Salmonella enterica Serovar Typhimurium. J Bacteriol 200.
dc.relationBlasdel BG, Chevallereau A, Monot M, Lavigne R, Debarbieux L. 2017. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J 11:1988-1996.
dc.relationSong S, Wood TK. 2020. A Primary Physiologcal Role of Toxin/Antitoxin Systems Is Phage Inhibition. Front Microbiol 11:1895.
dc.relationKamruzzaman M, Wu AY, Iredell JR. 2021. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 9.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleAnaerobiosis: a new gamer in phage-host interaction
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución