dc.contributorForero Shelton, Antonio Manu
dc.contributorNúñez Portela, Mayerlin
dc.creatorPerilla Rubio, Miguel Andrés
dc.date.accessioned2023-08-02T20:29:20Z
dc.date.accessioned2023-09-07T01:51:18Z
dc.date.available2023-08-02T20:29:20Z
dc.date.available2023-09-07T01:51:18Z
dc.date.created2023-08-02T20:29:20Z
dc.date.issued2022-12-15
dc.identifierhttp://hdl.handle.net/1992/69093
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728732
dc.description.abstractEn este documento se documenta el desarrollo de un sistema retroalimentado patra la correción de aberraciones en un microscopio de fluorescencia de hoja de luz. En el documento se expone la calibración del sistema óptica con el elemento de óptica adaptativa (SLM) con el cual se implementa un algoritmo de minimización de aberraciones en imàgenes de esferas fluorescentes.
dc.languagespa
dc.publisherUniversidad de los Andes
dc.publisherFísica
dc.publisherFacultad de Ciencias
dc.publisherDepartamento de Física
dc.relationD. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, y M. Verhaegen, "Practical guidelines for implementing adaptive optics in fluorescence microscopy", Adaptive Optics and Wavefront Control for Biological Systems IV. SPIE, feb. 23, 2018. doi: 10.1117/12.2287647.
dc.relationD. M. Jameson, Introduction to fluorescence. First edition, Taylor & Francis, 2014.
dc.relationX. Wang y Y. Lai, "Three basic types of fluorescence microscopy and recent improvement", E3S Web of Conferences, vol. 290. EDP Sciences, p. 01031, 2021. doi: 10.1051/e3sconf/202129001031.
dc.relationC. Singer, "Notes on the early history of microscopy", Proceedings of the Royal Society of Medicine, vol. 7, no. Sect_Hist_Med, pp. 247-279, 1914
dc.relationS. M. Opal, "A Brief History of Microbiology and Immunology", Vaccines: A Biography. Springer New York, pp. 31-56, nov. 10, 2009. doi: 10.1007/978-1-4419-1108-7_3.
dc.relationB. R. Masters, "Insights into the Development of Light Microscopes", in Superresolution Optical Microscopy: The Quest for Enhanced Resolution and Contrast, B. R. Masters, Ed. Cham: Springer International Publishing, 2020, pp. 41-50
dc.relationB. R. Masters, "History of the Optical Microscope in Cell Biology and Medicine", eLS. Wiley, dic. 15, 2008. doi: 10.1002/9780470015902.a0003082.
dc.relationF. López-Muñoz, J. Boya, y C. Alamo, "Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal", Brain Research Bulletin, vol. 70, no. 4, pp. 391--405, Oct. 2006.
dc.relationF. H. Kasten, "The Origins of Modern Fluorescence Microscopy and Fluorescent Probes", Cell Structure and Function by Microspectrofluorometry. Elsevier, pp. 3-50, 1989. doi: 10.1016/b978-0-12-417760-4.50008-2.
dc.relationN. Vladimirov, F. Preusser, J. Wisniewski, Z. Yaniv, R. A. Desai, A. Woehler y S. Preibisch "Dual-view light-sheet imaging through a tilted glass interface using a deformable mirror", Biomedical Optics Express, vol. 12, núm. 4. The Optical Society, p. 2186, mar. 18, 2021. doi: 10.1364/boe.416737.
dc.relationMani Ratnam Rai, Chen Li, y Alon Greenbaum, "Quantitative analysis of illumination and detection corrections in adaptive light sheet fluorescence microscopy," Biomed. Opt. Express 13, 2960-2974 (2022)
dc.relationE. H. K. Stelzer, "Light-sheet fluorescence microscopy for quantitative biology", Nature Methods, vol. 12, núm. 1. Springer Science and Business Media LLC, pp. 23-26, dic. 30, 2014. doi: 10.1038/nmeth.3219.
dc.relationP. Pozzi, O. Soloviev, D. Wilding, G. Vdovin, y M. Verhaegen, "Optimal model-based sensorless adaptive optics for epifluorescence microscopy", PLOS ONE, vol. 13, núm. 3. Public Library of Science (PLoS), p. e0194523, mar. 20, 2018. doi: 10.1371/journal.pone.0194523.
dc.relationC. J. R. Sheppard, H. Fatemi, y M. Gu, 2The fourier optics of near-field microscopy", Scanning, vol. 17, núm. 1. Wiley, pp. 28-40, dic. 07, 2006. doi: 10.1002/sca.4950170105
dc.relationR. W. Cole, T. Jinadasa, y C. M. Brown, "Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control", Nature Protocols, vol. 6, núm. 12. Springer Science and Business Media LLC, pp. 1929-1941, nov. 10, 2011. doi: 10.1038/nprot.2011.407.
dc.relationBo Zhang, Josiane Zerubia, y Jean-Christophe Olivo-Marin, "Gaussian approximations of fluorescence microscope point-spread function models," Appl. Opt. 46, 1819-1829 (2007)
dc.relationR.A. Abello, "Implementación de un microscopio de fluorescencia con una máscara de fase para ampliar su profundidad de campo," Monografía, Dept. de Fís., Univ. de los Andes,Bogotá, Colombia, 2022.
dc.relationA. He y C. Quan, "Wavefront correction for spatial nonuniformity of the liquid crystal on silicon based spatial light modulator", Optics and Lasers in Engineering, vol. 121. Elsevier BV, pp. 377-388, oct. 2019. doi: 10.1016/j.optlaseng.2019.05.010.
dc.relationT. Wright, "Development of a light-sheet fluorescence microscope employing an ALPAO deformable mirror to achieve video-rate remote refocusing and volumetric imaging." PhD. Dissertation, DPY, ICL, 2022.
dc.relationW. Hong et al.,"Adaptive light-sheet fluorescence microscopy with a deformable mirror for video-rate volumetric imaging", Applied Physics Letters, vol. 121, núm. 19. AIP Publishing, p. 193703, nov. 07, 2022. doi: 10.1063/5.0125946.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleÓptca adaptativa en microscopios para la reducción de aberraciones en volúmenes
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución