dc.contributorSierra Ramírez, Rocío
dc.contributorPosada Duque, John Alexander
dc.contributorMussatto, Solange I.
dc.contributorEl-Halwagi, Mahmoud
dc.contributorSaldarriaga, Juan Fernando
dc.contributorDos Santos, Julio
dc.creatorDurán Aranguren, Daniel David
dc.date.accessioned2023-07-13T14:45:07Z
dc.date.accessioned2023-09-07T01:51:11Z
dc.date.available2023-07-13T14:45:07Z
dc.date.available2023-09-07T01:51:11Z
dc.date.created2023-07-13T14:45:07Z
dc.date.issued2023-07-11
dc.identifierhttp://hdl.handle.net/1992/68392
dc.identifierinstname:Universidad de los Andes
dc.identifierreponame:Repositorio Institucional Séneca
dc.identifierrepourl:https://repositorio.uniandes.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8728730
dc.description.abstractEffective valorization of vegetable biomass under the biorefinery concept depends on taking full advantage of its chemical composition, which must be accurately quantified to appropriately valorize each one of its fractions. For this, it is necessary to use comprehensive and reliable compositional analysis methods. Also, the classification of different types of biomasses, greatly contributes to the accuracy of the compositional analysis while facilitating the selection pathways (operations, processes, products) during the design process based on a specific feedstock. This work proposes a pioneer methodological framework for biorefinery design that suggests using the composition of vegetable biomass as a key parameter for biomass valorization and biorefinery design. Novel techniques that involve the use of data clustering, a form of unsupervised learning, will be implemented to find patterns that could help in the classification of vegetable biomass composition. This results in the formation of groups that, together with biomass cascading criteria which prioritizes the use of materials and products over energy were used as a guide to obtain experimental data regarding yields of different products under various processing conditions to maximize the recovery of valuable substances in a biorefinery from orange residues. This work included a systematic literature review about compositional analysis methods and biomass characterization techniques that could be used for biorefinery design, the construction of a biomass composition database used to obtain different groups through data clustering, a revision on how lignocellulosic biomass and fruit-derived biomass are currently valorized considering their composition, and finally the valorization of valuable fractions recovered from orange residues the formulation of a baked good, the evaluation of different valorization techniques for orange residues, and finally an experimental cascade to integrate several processing options into a biorefinery.
dc.languageeng
dc.publisherUniversidad de los Andes
dc.publisherDoctorado en Ingeniería
dc.publisherFacultad de Ingeniería
dc.publisherDepartamento de Ingeniería Química y de Alimentos
dc.relation[1]. FAO. (2020). FAO - News Article: Food loss and waste must be reduced for greater food security and environmental sustainability. FAO. http://www.fao.org/news/story/en/item/1310271/icode/
dc.relation[2]. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
dc.relation[3]. Halder, P., Azad, K., Shah, S., & Sarker, E. (2019). Prospects and technological advancement of cellulosic bioethanol ecofuel production. In Advances in Eco-Fuels for a Sustainable Environment. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00008-5
dc.relation[4]. Reuters. (2019). How ethanol plant shutdowns deepen pain for U.S. corn farmers. Commodities News. https://www.reuters.com/article/us-usa-biofuels-corn-idUSKBN1YH1B7
dc.relation[5]. Slegers, P. M., Olivieri, G., Breitmayer, E., Sijtsma, L., Eppink, M. H. M., Wijffels, R. H., & Reith, J. H. (2020). Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Frontiers in Bioengineering and Biotechnology, 8(September), 1-17. https://doi.org/10.3389/fbioe.2020.550758
dc.relation6]. Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., Van Ree, R., & de Jong, E. Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534-546. https://doi.org/10.1002/bbb.17
dc.relation[7]. Kokossis, A. C., & Yang, A. (2010). On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Computers and Chemical Engineering, 34(9), 1397-1405. https://doi.org/10.1016/j.compchemeng.2010.02.021
dc.relation[8]. Aristizábal Marulanda, V., & Cardona Alzate, C. A. (2019). Methods for designing and 18 assessing biorefineries: Review. Biofuels, Bioproducts and Biorefining, 13(3), 789-808. https://doi.org/10.1002/bbb.1961
dc.relation[9]. Olsson, O., Bruce, L., Roos, A., Hektor, B., Guisson, R., Lamers, P., Hartley, D., Ponitka, J., Hildebrandt, J., & Thrän, D. (2016). Cascading of woody biomass: definitions, policies and effects on international trade. In IEA Bioenergy Task 40 working paper. http://task40.ieabioenergy.com/wp-content/uploads/2013/09/t40-cascading-2016.pdf
dc.relation10]. Battista, F., Zanzoni, S., Strazzera, G., Andreolli, M., & Bolzonella, D. (2020). The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 157, 1203-1211. https://doi.org/10.1016/j.renene.2020.05.11
dc.relation[11]. Fehrenbach, H., Köppen, S., Kauertz, B., Detzel, A., & Wellenreuther, F. (2017). Biomass Cascades: Increasing Resource Efficiency by Cascading Use of Biomass From Theory to Practice.
dc.relation[12]. Weihrauch, J. L., & Teter, B. B. (1994). Fruit and vegetable by-products as sources of oil. In Technological Advances in Improved and Alternative Sources of Lipids (pp. 177-208). Springer US. https://doi.org/10.1007/978-1-4615-2109-9_7
dc.relation[13]. Chen, G.-L. L., Chen, S.-G. G., Zhao, Y.-Y. Y., Luo, C.-X. X., Li, J., & Gao, Y.-Q. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150-157. https://doi.org/10.1016/j.indcrop.2014.03.018
dc.relation[14]. Kringel, D. H., Dias, A. R. G., Zavareze, E. da R., & Gandra, E. A. (2020). Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke, 72(3-4), 1-9. https://doi.org/10.1002/star.201900200
dc.relation[15]. Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elst, K., & Sforza, S. (2016). Pectin content and composition from different food waste streams in memory of Anna Surribas, scientist and friend. Food Chemistry, 201, 37-45. https://doi.org/10.1016/j.foodchem.2016.01.012
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rightshttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.titleVegetable biomass composition: The key parameter for biomass valorization and biorefinery design
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución