dc.contributor | Caballero Gaitán, Susana | |
dc.contributor | Polanco Fernández, Andrea | |
dc.contributor | Madriñán Restrepo, Santiago | |
dc.contributor | LEMVA (Laboratorio de Ecologia Molecular de Vertebrados Acuaticos) | |
dc.creator | Caicedo Salcedo, Oscar David | |
dc.date.accessioned | 2023-01-10T15:59:20Z | |
dc.date.accessioned | 2023-09-07T01:44:39Z | |
dc.date.available | 2023-01-10T15:59:20Z | |
dc.date.available | 2023-09-07T01:44:39Z | |
dc.date.created | 2023-01-10T15:59:20Z | |
dc.date.issued | 2022-12-13 | |
dc.identifier | http://hdl.handle.net/1992/63644 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728627 | |
dc.description.abstract | In recent decades, advances in molecular techniques have given rise to a new biomonitoring tool known as environmental DNA (eDNA). With an efficient, non-invasive, and replicable sampling approach, eDNA is currently posited as having great potential for the study of ecology and biodiversity, circumventing many of the challenges associated with traditional survey techniques. In this work we performed the first environmental DNA analysis for the Colombian Pacific region known as the Gulf of Tribugá. A place recognized worldwide for being a biodiversity Hotspot and a mission blue Hopespot. Using 32 environmental DNA collection kits provided by NatureMetrics®, environmental DNA samples were collected during a total of eight months, distributed in two seasons (humpback whale season / sardine season). The collected samples were analyzed using two primers designed for the vertebrate lineage, being the 12S_V5 rRNA and 16S rRNA region the chosen ones. More than 150 taxa of different classes were obtained, with fish being the most abundant taxa registered. Some of the fish species include pacific sierra (Scomberomorus sierra), houndfish (Tylosurus crocodilus), yellowfin tuna (Thunnus albacares), silky shark (Carcharhinus falciformis), longnose anchovy (Anchoa nasus), Pacific dog snapper (Lutjanus sp.) among others. However, there were also records of birds such as green heron (Butorides virescens) and magnificent frigate bird (Fregata magnificens); marine mammals such as the humpback whale (Megaptera novaeangliae), rough-toothed dolphin (Steno bredanensis), and terrestrial mammals as giant anteater (Myrmecophaga tridactyla) and bush dog (Speothos venaticus), among others. Other groups such as amphibians and reptiles were also detected in smaller proportions. Although not all records provide the lowest taxonomic classification and there are few false positives, the tool demonstrates a solid approximation to the species diversity of the Gulf of Tribugá and allows the contrast of these results with the little information available for the region. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ciencias Biológicas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Departamento de Ciencias Biológicas | |
dc.relation | AGENDA DEL MAR. Salvemos el golfo de Tribugá [Online] [Accessed 15 July 2022]. Available: https://agendadelmar.com/salvemos-el-golfo-de-tribug/ | |
dc.relation | Arbeláez-Cortés, Enrique. (2013). Knowledge of Colombian biodiversity: Published and indexed. Biodiversity and Conservation. 22. 10.1007/s10531-013-0560-y. | |
dc.relation | Alcaldía Municipal de Nuquí. (2005). Esquema de Ordenamiento Territorial municipio de Nuquí,
departamento de Chocó. Nuquí: Alcaldía Municipal de Nuquí, Instituto de Investigaciones Ambientales
del Pacífico Convenio BID-Plan Pacífico- MAVDT-Gobernación del Chocó-U.T.CH.IIAP. | |
dc.relation | Axtner, J., Crampton-Platt, A., Hörig, L.A.,Mohamed, A., Xu, C. C. Y., Yu,D.W., et al. (2019). An Efficient and Robust Laboratory Workflow and Tetrapod Database for Larger Scale Environmental DNA Studies. GigaScience 8. doi:10.1093/gigascience/giz029 | |
dc.relation | Barrera, J.C., Vásquez-López L. M., Guevara, E. A., Barajas, S. F. (2021). Boletín Meteomarino del Pacifico Colombiano. Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico (CCCP) y Dirección General Marítima (Dimar) | |
dc.relation | Barrera, J.C., Vásquez-López L. M., Guevara, E. A., Barajas, S. F. (2022). Boletín Meteomarino del Pacifico Colombiano. Centro de Investigaciones Oceanográficas e Hidrográficas del Pacífico (CCCP) y Dirección General Marítima (Dimar) | |
dc.relation | Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM. (2014). Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol. 2014;48(3):1819-27. Epub Jan 21. PMID: 24422450. doi: 10.1021/es404734p. | |
dc.relation | Beng, K.C., Corlett, R.T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges, and prospects. Biodivers Conserv 29, 2089-2121. https://doi.org/10.1007/s10531-020-01980-0 | |
dc.relation | Caballero, S., Hamilton, Healy, Jaramillo, Carlos, Capella, Juan, Flórez-González, Lilián, Olavarria, Carlos, Rosenbaum, H., Guhl, Felipe & Baker, C. (2001). Genetic characterization of the Colombian Pacific Coast humpback whale population using RAPD and mitochondrial DNA sequences. Memoirs of the Queensland Museum 47. 459-464. | |
dc.relation | Caballero S., Ortiz-Giral M.C, Bohorquez L., Lozano Mojica J.D., Caicedo-Herrera D., Arévalo-González K. and Mignucci-Giannoni A.A. (2021). Mitochondrial Genetic Diversity, Population Structure and Detection of Antillean and Amazonian Manatees in Colombia: New Areas and New Techniques. Front. Genet. 12:726916. doi: 10.3389/fgene.2021.726916 | |
dc.relation | Cárdenas, S., L. Cardona, M. A. Echeverry-Galvis, and P. R. Stevenson. (2020). Movement patterns and habitat preference of Oilbirds (Steatornis caripensis) in the southern Andes of Colombia. Avian Conservation and Ecology 15(2):5. https://doi.org/10.5751/ACE-01564-150205 | |
dc.relation | Camacho, C., Coulouris, G., Avagyan, V.,Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). Blast+: Architecture and Applications. BMC Bioinformatics 10, 421.doi:10.1186/1471-2105-10-421 | |
dc.relation | Collins, R.A., Wangensteen, O.S., O'Gorman, E.J. et al. (2018). Persistence of environmental DNA in marine systems. Commun Biol 1, 185. https://doi.org/10.1038/s42003-018-0192-6 | |
dc.relation | DiBattista, J. D., Reimer, J. D., Stat, M., Masucci, G. D., Biondi, P., De Brauwer, M., ... y Bunce, M.49 (2020). Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific reports, 10(1), 1-15. doi: https://doi.org/10.1038/s41598-020-64858-9 | |
dc.relation | Duque Caro, H. (1990). El bloque del Chocó en el noroccidente suramericano: implicaciones estructurales, tectonoestratigráficas y paleogeográficas. Boletín Geológico, 31(1), 48-71. https://doi.org/10.32685/0120-1425/bolgeol31.1.1990.179 | |
dc.relation | eBird. 2022. eBird: An online database of bird distribution and abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca, New York. Available: http://www.ebird.org. (Accessed: Date [ September 12, 2022]). | |
dc.relation | Eble J. A., Daly-Engel T.S., DiBattista J.D., Koziol A., Gaither M.R. (2020). Chapter Two - Marine environmental DNA: Approaches, applications, and opportunities. Editor(s): Charles Sheppard, Advances in Marine Biology, Academic Press, 86(1): 141-169. https://doi.org/10.1016/bs.amb.2020.01.001 | |
dc.relation | Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461. doi: 10.1093/bioinformatics/btq461 | |
dc.relation | Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv [Preprint] 081257. doi: 10.1101/081257 | |
dc.relation | Ferrini, S. et al., (2020). Biodiversity protection in Colombia: An Economic Perspective. Report 2. GROW Colombia Project Series. GROW Colombia Project UKRI GCRF Grant BB/P028098/1. Norwich, UK | |
dc.relation | Froese, R. and Pauly. D. Editors. (2022). FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2022). | |
dc.relation | Frøslev, T. G., Kjøller, R., Bruun, H. H., R., E., Brunbjerg, A. K., et al. (2017). Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8:1188. doi: 10.1038/s41467-017-01312-x | |
dc.relation | Flück, B., Mathon, L., Manel, S. et al. (2022). Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem. Sci Rep 12, 10247. https://doi.org/10.1038/s41598-022-13412-w | |
dc.relation | GBIF.org (2022). GBIF Home Page. Available on: https://www.gbif.org [25 of August 2022]. | |
dc.relation | Guerra, F. M., Trujillo, F., Cuero, C. A., Jiménez-Ortega, A. M., & Mantilla-Meluk, H. (2019). Nuevos registros de cámara trampa de Speothos venaticus (Lund 1842) (Canidae: Carnivora) en la altillanura colombiana. Revista Biodiversidad Neotropical, 9(2). | |
dc.relation | Hu, N., Bourdeau, P. E., Harlos, C., Liu, Y., and Hollander, J. (2022). Meta-analysis Reveals Variance in Tolerance to Climate Change across Marine Trophic Levels. Sci. Total Environ. 827, 154244. doi:10.1016/j.scitotenv.2022.154244 | |
dc.relation | Juhel, J-B, Marques, V, Polanco Fernández, A, et al. (2021). Detection of the elusive Dwarf sperm whale (Kogia sima) using environmental DNA at Malpelo island (Eastern Pacific, Colombia). Ecol. Evol.; 11: 2956-2962. https://doi.org/10.1002/ece3.7057 | |
dc.relation | Lasso, C. A., de Paula Gutiérrez, F., Morales-Betancourt, M. A., Agudelo, E., Ramírez -Gil, H., & Ajiaco-Martínez, R. E. (2011). Pesquerías con- tinentales de Colombia: cuencas del Magdalena-Cauca, Sinú, Canalete, Atrato, Orinoco, Amazonas y vertiente del Pacífico. Bogotá, D. C: Instituto de In- vestigación de los Recursos Biológicos Alexander von Humboldt. | |
dc.relation | Li, M., Shan, X., Wang, W., Ding, X., Dai, F., Lv, D. y H. Wu. (2020). Qualitative and quantitative detection using eDNA technology: A case study of Fenneropenaeus chinensis in the Bohai Sea. Aquaculture and Fisheries 5: 148-155. https://doi.org/10.1016/j.aaf.2020.03.012 | |
dc.relation | Lozano, Juan D. & Caballero, S. (2020). Applications of eDNA metabarcoding for vertebrate diversity studies in northern Colombian water bodies. Front. Ecol. Evol. 8, 1-16 doi: 10.3389/fevo.2020.617948 | |
dc.relation | Lynch, J. D. & A. Suárez-Mayorga. (2004). Anfibios en el Chocó biogeográfico.633-668 pp. En: J.O. Rangel-Ch. (ed.), Diversidad Biótica IV. El chocó Biogeográfico/Costa Pacífica. Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Conservación Internacional. Bogotá, D.C. pp.997. | |
dc.relation | Marchese C. (2015). Biodiversity hotspots: A shortcut for a more complicated concept, Global Ecology and Conservation, Volume 3, pages 297-309, ISSN 2351-9894,https://doi.org/10.1016/j.gecco.2014.12.008. | |
dc.relation | Martínez-Porchas, M. (2012). Estudios de la distribución de la sardina del pacífico Sardinops sagax caeruleus (Clupeiformes: Clupeidae): historia, estado actual y perspectivas. Universidad y ciencia, 28(3), 285-300. | |
dc.relation | Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10-12. doi: 10.14806/ej.17.1.200 | |
dc.relation | McMurdie P.J, Holmes S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE 8(4): e61217. https://doi.org/10.1371/journal.pone.0061217 | |
dc.relation | Moura, A.E.; Shreves, K.; Pilot, M.; Andrews, K.R.; Moore, D.M.; Kishida, T.; Möller, L.; Natoli, A.; Gaspari, S.; McGowen, M.; et al. (2020). Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol. Phylogenet. Evol., 146, 106756. https://doi.org/10.1016/j.ympev.2020.106756 | |
dc.relation | Ogram, Andrew, Gary S. Sayler, and Tamar Barkay. (1987). The Extraction and Purification of Microbial DNA from Sediments. Journal of Microbiological Methods 7 (2-3): 57-66. https://doi.org/10.1016/0167-7012(87)90025-X | |
dc.relation | Oksanen, J., Simpson, G. L, Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., et al. (2022). vegan: Community Ecology Package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan | |
dc.relation | Pinfield, R, Dillane, E, Runge, AKW, et al. (2019). False-negative detections from environmental DNA collected in the presence of large numbers of killer whales (Orcinus orca). Environmental DNA.1: 316-328. https://doi.org/10.1002/edn3.32 | |
dc.relation | Polanco Fernández, A, Marques, V, Fopp, F, et al. (2021). Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environmental DNA.; 3: 142-156. https://doi.org/10.1002/edn3.140 | |
dc.relation | Pont, D., Rocle, M., Valentini, A. et al. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci Rep 8, 10361. https://doi.org/10.1038/s41598-018-28424-8 | |
dc.relation | Rangel-Ch., J.O. (2004). Ecosistemas del Chocó biogeográfico: síntesis final. En: Rangel-Ch., J.O. (ed). Colombia Diversidad Biótica IV. El Chocó biogeográfico/Costa Pacífica: 937-976. Instituto de Ciencias Naturales. Bogotá, D.C. | |
dc.relation | Ramírez, A. (2006). Ecología: métodos de muestreo y análisis de poblaciones y comunidades. Bogotá, Colombia: Pontificia Universidad Javeriana. | |
dc.relation | Riaz, T., Shezad, W., Viari, A., Pompanon, F., Taberlet, P., and Coissac, E. (2011). ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39:e145. doi: 10.1093/nar/gkr732 | |
dc.relation | RStudio Team (2022). RStudio: Integrated Development for R. RStudio Team. Available online at: http://www.rstudio.com/. | |
dc.relation | Ruppert, K. M., Kline, R. J. y M. S. Rahman (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation: e00547. | |
dc.relation | Saenz-Agudelo, P., Delrieu-Trottin, E., DiBattista, J.D., Martínez-Rincon, D., Morales-González, S., Pontigo, F., Ramírez, P., Silva, A., Soto, M. and Correa, C. (2022). Monitoring vertebrate biodiversity of a protected coastal wetland using eDNA metabarcoding. Environmental DNA, 4: 77-92. https://doi.org/10.1002/edn3.200 | |
dc.relation | Saito, T. and Doi, H. (2021). Degradation modeling of water environmental DNA: Experiments on multiple DNA sources in pond and seawater. Environmental DNA. https://doi.org/10.1002/edn3.192 | |
dc.relation | Seymour, M. (2019). Rapid progression and future of environmental DNA research. Commun Biol 2, 80, https://doi.org/10.1038/s42003-019-0330-9 | |
dc.relation | Shen, M., Xiao, N., Zhao, Z. et al. (2022). eDNA metabarcoding as a promising conservation tool to monitor fish diversity in Beijing water systems compared with ground cages. Sci Rep 12, 11113. https://doi.org/10.1038/s41598-022-15488-w | |
dc.relation | Stoeckle MY, Das Mishu M, Charlop-Powers Z (2018). GoFish: A versatile nested PCR strategy for environmental DNA assays for marine vertebrates. PLOS ONE 13(12): e0198717. https://doi.org/10.1371/journal.pone.0198717 | |
dc.relation | Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92. https://doi.org/10.1016/j.biocon.2014.11.038 | |
dc.relation | Solari S., Muñoz-Saba Y., Rodríguez-Mahecha J.V, Defler T.R., Ramírez-Cháves H.E, Trujillo F. (2013). Riqueza, endemismo y conservación de los mamíferos de Colombia. Mastozool Neotrop. 20 (2): 301-65. | |
dc.relation | Székely, D, Corfixen, NL, Mørch, LL, et al. (2021). Environmental DNA captures the genetic diversity of bowhead whales (Balaena mysticetus) in West Greenland. Environmental DNA.; 3: 248-260. https://doi.org/10.1002/edn3.176 | |
dc.relation | Tabor, C. (2019). Evaluation of environmental DNA surveys for identifying occupancy and spatial distribution of Pacific Lamprey (Entosphenus tridentatus) and Lampetra spp. in a Washington coast watershed. Environmental DNA, 1(2), 131-143. https://doi.org/10.1002/edn3.15 | |
dc.relation | Thomsen P. F, Willerslev E. (2015). Environmental DNA-an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4-18 | |
dc.relation | Tobón-López, A., Rubio, E. A, & Giraldo, A. (2008). Composición y análisis taxonómico de la íctiofauna del golfo de Tribugá, Pacífico norte de Colombia. Latin american journal of aquatic research, 36(1), 93-104. | |
dc.relation | Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis A review of methods for collection, extraction, and detection. Environmental DNA, 1(2), 99-108. https://doi.org/10.1002/edn3.21 | |
dc.relation | UNEP-WCMC (2016). The State of Biodiversity in Latin America and the Caribbean: A mid-term review of progress towards the Aichi Biodiversity Targets. UNEP-WCMC, Cambridge, UK | |
dc.relation | Urrutia, N. S. (2017). Caracterización Ecológica de los Mamíferos del Cerro Jánano. v1.3. Instituto de Investigaciones Ambientales del Pacifico John Von Neumann (IIAP). Dataset/Occurrence. https://doi.org/10.15472/6ukz9t | |
dc.relation | Urrutia N. S & Ríos E. Y. (2018). Caracterización Ecológica de la avifauna del Cerro Jánano. Version 1.4. Instituto de Investigaciones Ambientales del Pacífico John Von Neumann - IIAP. Occurrence dataset https://doi.org/10.15472/w0ktlb accessed via GBIF.org on 2022-10-17. | |
dc.relation | Valsecchi, E, Bylemans, J, Goodman, S. J, et al. (2020). Novel universal primers for metabarcoding environmental DNA surveys of marine mammals and other marine vertebrates. Environmental DNA. 2: 460-476. https://doi.org/10.1002/edn3.72 | |
dc.relation | Walls, S., Barichivich, W., & Brown, M. (2013). Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate. Biology, 2(1), 399-418. MDPI AG. Retrieved from http://dx.doi.org/10.3390/biology2010399 | |
dc.relation | Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Community changes in vertebrate composition in the Gulf of Tribugá, Colombia, based on eDNA analysis | |
dc.type | Trabajo de grado - Maestría | |