dc.contributor | Giraldo Trujillo, Luis Felipe | |
dc.contributor | Cifuentes de la Portilla, Christian Javier | |
dc.contributor | Maldonado Javier Dario | |
dc.contributor | Molina, Maria Alejandra | |
dc.contributor | Prada Lievano, Silvia Alejandra | |
dc.contributor | García Cárdenas, Juan José | |
dc.contributor | Arbeláez Escalante, Pablo Andrés | |
dc.creator | Chávez Leyton, Susana Marcela | |
dc.date.accessioned | 2023-07-10T19:10:25Z | |
dc.date.accessioned | 2023-09-07T01:44:00Z | |
dc.date.available | 2023-07-10T19:10:25Z | |
dc.date.available | 2023-09-07T01:44:00Z | |
dc.date.created | 2023-07-10T19:10:25Z | |
dc.date.issued | 2023-06-22 | |
dc.identifier | http://hdl.handle.net/1992/68272 | |
dc.identifier | instname:Universidad de los Andes | |
dc.identifier | reponame:Repositorio Institucional Séneca | |
dc.identifier | repourl:https://repositorio.uniandes.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8728617 | |
dc.description.abstract | El aprendizaje automático ha encontrado una amplia aplicación en el campo de la medicina. Los diferentes métodos están diseñados para complementar la toma de decisiones humanas, proporcionar información y ayudar en tareas médicas. En este caso se explicarán las predicciones sobre dos problemas retadores: predicción de mortalidad en cirugías cardiovasculares y una base de datos para la predicción de los modos de locomoción en escaleras usando sensores IMU. | |
dc.description.abstract | We address the problem of mortality prediction in cardiovascular surgery patients using preoperative features with the Colombian population in South America. We have a database with a total of 4337 medical histories where 6% corresponds to mortality. An optimized gradient boosting algorithm (XGBoost) was implemented with custom random split datasets and used Monte Carlo cross-validation with them. The results obtained show a F1 of 19% due to the imbalance showing the challenge of the problem and gives the community a first approach to the work in this area. | |
dc.language | eng | |
dc.publisher | Universidad de los Andes | |
dc.publisher | Maestría en Ingeniería Electrónica y de Computadores | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Departamento de Ingeniería Eléctrica y Electrónica | |
dc.relation | DANE. Boletín Técnico: Pobreza Multidimensional En Colombia. Bogotá D.C.,Colombia;2019. | |
dc.relation | Ferguson TB Jr, Dziuban SW, Edwards FH, etal. The STS. National Database: current changes and challenges for the new millennium. Ann Thorac Surg 2000;69:680-91. | |
dc.relation | Nashef SAM, Roques F, Sharples LD, et al. Vallancien G, Emberton M, Harving N, van Moorselaar RJ, Alf-One Study Group. EuroSCORE II dagger. Eur J Cardiothorac Surg. 2012;41:734-745. | |
dc.relation | Victorio C. Carosella and others, The first Latin-American risk stratification system for cardiac surgery: can be used as a graphic pocket-card score, Interactive CardioVascular and Thoracic Surgery, Volume 9, Issue 2, August 2009, Pages 203-208, https://doi.org/10.1510/icvts.2008.199083. | |
dc.relation | Molina, R. S., Molina-Rodríguez, M. A., Rincón, F. M., & Maldonado, J. D. (2022, January). Cardiac Operative Risk in Latin America: A Comparison of Machine Learning Models vs EuroSCORE-II. The Annals of Thoracic Surgery, 113(1), 92-99. https://doi.org/10.1016/j.athoracsur.2021.02.052 | |
dc.relation | AutoML: Automatic Machine Learning. H2O. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html | |
dc.relation | Guogen Shan. Monte Carlo cross-validation for a study with binary outcome and limited sample size. MC Med Inform Decis Mak 2022. DOI: https://doi.org/10.1186/s12911-022-02016-z | |
dc.relation | J. Camargo, A. Ramanathan, W. Flanagan, and A. Young, "A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions," Journal of Biomechanics, vol. 119, p. 110320, 2021. | |
dc.relation | V. Losing and M. Hasenjäger, "A Multi-Modal Gait Database of Natural Everyday-walk in an urban environment," Scientific Data, vol. 9, no. 1, 2022. doi:10.1038/s41597-022-01580-3. | |
dc.relation | K. Bhakta, J. Camargo, L. Donovan, K. Herrin, and A. Young, "Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses," IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5393-5400, 2020. doi:10.1109/lra.2020.3007480 | |
dc.relation | Khandelwal, S. & Wickström, N. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Gait & Posture 51, 84-90 (2017). | |
dc.relation | Guillén Aguirre, C. (2021). Interpretable ambulation mode classification method for human-wearable robot interaction. Universidad de los Andes. | |
dc.relation | "Movella Dot," Movella.com, https://www.movella.com/products/wearables/movella-dot (accessed Jun. 20, 2023). | |
dc.relation | "Welcome to OpenSim," Welcome to OpenSim - OpenSim Documentation - Global Site, https://simtk-confluence.stanford.edu:8443/display/OpenSim/Welcome+to+OpenSim (accessed Jun. 20, 2023). | |
dc.relation | "XGBoost," XGBoost - H2O 3.40.0.4 documentation, https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html (accessed Jun. 20, 2023). | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights | https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.title | Machine learning in medicine: mortality prediction on cardiac surgeries in Colombia | |
dc.type | Trabajo de grado - Maestría | |